Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 406
Filtrar
1.
Phytomedicine ; 129: 155510, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38696921

RESUMO

BACKGROUND: Gut microbiota plays a critical role in the pathogenesis of depression and are a therapeutic target via maintaining the homeostasis of the host through the gut microbiota-brain axis (GMBA). A co-decoction of Lilii bulbus and Radix Rehmannia Recens (LBRD), in which verbascoside is the key active ingredient, improves brain and gastrointestinal function in patients with depression. However, in depression treatment using verbascoside or LBRD, mechanisms underlying the bidirectional communication between the intestine and brain via the GMBA are still unclear. PURPOSE: This study aimed to examine the role of verbascoside in alleviating depression via gut-brain bidirectional communication and to study the possible pathways involved in the GMBA. METHODS: Key molecules and compounds involved in antidepressant action were identified using HPLC and transcriptomic analyses. The antidepressant effects of LBRD and verbascoside were observed in chronic stress induced depression model by behavioural test, neuronal morphology, and synaptic dendrite ultrastructure, and their neuroprotective function was measured in corticosterone (CORT)-stimulated nerve cell injury model. The causal link between the gut microbiota and the LBRD and verbascoside antidepressant efficacy was evaluate via gut microbiota composition analysis and faecal microbiota transplantation (FMT). RESULTS: LBRD and Verbascoside administration ameliorated depression-like behaviours and synaptic damage by reversing gut microbiota disturbance and inhibiting inflammatory responses as the result of impaired intestinal permeability or blood-brain barrier leakiness. Furthermore, verbascoside exerted neuroprotective effects against CORT-induced cytotoxicity in an in vitro depression model. FMT therapy indicated that verbascoside treatment attenuated gut inflammation and central nervous system inflammatory responses, as well as eliminated neurotransmitter and brain-gut peptide deficiencies in the prefrontal cortex by modulating the composition of gut microbiota. Lactobacillus, Parabacteroides, Bifidobacterium, and Ruminococcus might play key roles in the antidepressant effects of LBRD via the GMBA. CONCLUSION: The current study elucidates the multi-component, multi-target, and multi-pathway therapeutic effects of LBRD on depression by remodeling GMBA homeostasis and further verifies the causality between gut microbiota and the antidepressant effects of verbascoside and LBRD.

2.
JMIR Public Health Surveill ; 10: e50996, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630529

RESUMO

BACKGROUND: Existing literature on the association between the frequency of muscle-strengthening exercise (MSE) and depression among adolescents is limited and contradictory. OBJECTIVE: This study aimed to elucidate the association of MSE frequency with depression symptoms among middle and high school students in China. METHODS: A total of 27,070 students in grades 7-12 from 376 middle and high schools were surveyed using an anonymous self-administered questionnaire between April and June 2022. Information on engaging in MSE was self-reported, and depression symptoms were assessed using the Patient Health Questionnaire-9 (PHQ-9). Poisson regression was used to examine the association between MSE frequency and depression symptoms. RESULTS: Among the 27,006 eligible students, 51.6% (n=13,933) were boys, and the mean age was 15.6 (SD 1.7) years. The overall prevalence of meeting MSE recommendations (ie, engaging in MSE ≥3 days/week) was 34.6% (95% CI 32.6%-36.6%; n=9145); the prevalence was higher in boys (43.8%, 95% CI 41.8%-45.8%; 6067/13,933) than in girls (24.3%, 95% CI 22%-26.6%; 3078/13,073; P<.001). A total of 5882 (21.8%) students reported having depression symptoms. After adjustment for sociodemographic status, lifestyle factors, academic performance, and experience of physical fighting, compared to students who did not engage in MSE, the prevalence ratios (PRs) for depression symptoms were 0.98 (95% CI 0.97-0.99) for those engaging in MSE once a week, 0.95 (95% CI 0.93-0.97) for 2 days/week, 0.93 (95% CI 0.90-0.96) for 3 days/week, 0.90 (95% CI 0.87-0.94) for 4 days/week, 0.88 (95% CI 0.84-0.93) for 5 days/week, 0.86 (95% CI 0.81-0.92) for 6 days/week, and 0.84 (95% CI 0.78-0.90) for 7 days/week, respectively. CONCLUSIONS: The overall prevalence of meeting MSE recommendations among Chinese adolescents is low. The frequency of MSE was inversely associated with depression symptoms.


Assuntos
Depressão , Músculos , Adolescente , Masculino , Feminino , Humanos , Estudos Transversais , Depressão/epidemiologia , Autorrelato , Estudantes
3.
Talanta ; 274: 125934, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574533

RESUMO

Nowadays, novel and efficient signal amplification strategy in electrochemiluminescence (ECL) platform is urgently needed to enhance the sensitivity of biosensor. In this work, the dual ECL signal enhancement strategy was constructed by the interactions of Pd nanoparticles attached covalent organic frameworks (Pd NPs@COFs) with tris (bipyridine) ruthenium (RuP) and Exonuclease III (Exo.III) cycle reaction. Within this strategy, the COFs composite was generated from the covalent reaction between 2-nitro-1,4-phenylenediamine (NPD) and trialdehyde phloroglucinol (Tp), and then animated by glutamate (Glu) to attach the Pd NPs. Next, the "signal on" ECL biosensor was constructed by the coordination assembly of thiolation capture DNA (cDNA) onto the Pd NPs@COFs modified electrode. After the aptamer recognition of progesterone (P4) with hairpin DNA 1 (HP1), the Exo. III cycle reaction was initiated with HP2 to generate free DNA, which hybridized with cDNA to form double-stranded DNA (dsDNA). For that, the RuP was embedded into the groove of dsDNA and achieved the ultrasensitive detection of P4 with a lower limit of detection (LOD) down to 0.45 pM, as well as the excellent selectivity and stability. This work expands the COFs-based materials application in ECL signal amplification and valuable DNA cyclic reaction in biochemical testing field.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Exodesoxirribonucleases , Nanopartículas Metálicas , Estruturas Metalorgânicas , Paládio , Progesterona , Nanopartículas Metálicas/química , Estruturas Metalorgânicas/química , Paládio/química , Progesterona/análise , Progesterona/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Exodesoxirribonucleases/química , Exodesoxirribonucleases/metabolismo , Limite de Detecção , Medições Luminescentes/métodos , Humanos , DNA/química
4.
Aquat Toxicol ; 270: 106883, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38503038

RESUMO

The escalating use of silver nanoparticles (AgNPs) across various sectors for their broad-spectrum antimicrobial capabilities, has raised concern over their potential ecotoxicological effects on aquatic life. This study explores the impact of AgNPs (50 µg/L) on the marine clam Ruditapes philippinarum, with a particular focus on its gills and digestive glands. We adopted an integrated approach that combined in vivo exposure, biochemical assays, and transcriptomic analysis to evaluate the toxicity of AgNPs. The results revealed substantial accumulation of AgNPs in the gills and digestive glands of R. philippinarum, resulting in oxidative stress and DNA damage, with the gills showing more severe oxidative damage. Transcriptomic analysis further highlights an adaptive up-regulation of peroxisome-related genes in the gills responding to AgNP-induxed oxidative stress. Additionally, there was a noteworthy enrichment of differentially expressed genes (DEGs) in key biological processes, including ion binding, NF-kappa B signaling and cytochrome P450-mediated metabolism of xenobiotics. These insights elucidate the toxicological mechanisms of AgNPs to R. philippinarum, emphasizing the gill as a potential sensitive organ for monitoring emerging nanopollutants. Overall, this study significantly advances our understanding of the mechanisms driving nanoparticle-induced stress responses in bivalves and lays the groundwork for future investigations into preventing and treating such pollutants in aquaculture.


Assuntos
Bivalves , Nanopartículas Metálicas , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Prata/análise , Poluentes Químicos da Água/toxicidade , Bivalves/metabolismo , Brânquias
5.
Environ Sci Technol ; 58(11): 4926-4936, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38452107

RESUMO

This study introduces a novel surface-enhanced Raman spectroscopy (SERS)-based lateral flow test (LFT) dipstick that integrates digital analysis for highly sensitive and rapid viral quantification. The SERS-LFT dipsticks, incorporating gold-silver core-shell nanoparticle probes, enable pixel-based digital analysis of large-area SERS scans. Such an approach enables ultralow-level detection of viruses that readily distinguishes positive signals from background noise at the pixel level. The developed digital SERS-LFTs demonstrate limits of detection (LODs) of 180 fg for SARS-CoV-2 spike protein, 120 fg for nucleocapsid protein, and 7 plaque forming units for intact virus, all within <30 min. Importantly, digital SERS-LFT methods maintain their robustness and their LODs in the presence of indoor dust, thus underscoring their potential for accurate and reliable virus diagnosis and quantification in real-world environmental settings.


Assuntos
Nanopartículas Metálicas , Glicoproteína da Espícula de Coronavírus , Vírus , Humanos , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , Limite de Detecção , Ouro/química
6.
Huan Jing Ke Xue ; 45(3): 1371-1381, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471853

RESUMO

Based on environmental monitoring data and meteorological observation data from 2016 to 2022 in Beijing, combined with backward trajectory clustering and potential source area contribution analysis, the characteristics, meteorological impacts, and potential source areas of ozone (O3) pollution were analyzed. The results showed that there was a total of 41 O3 pollution processes with jumping characteristics in Beijing from 2016 to 2022, with an average of 5.9 times a year. The occurrence time was concentrated in May to July, and the day of the jump (OJD2) was higher than the day before the jump (OJD1). The average value of ρ(O3-8h) was 78.3% higher, and the peak concentration was 78.9% higher. The high O3 concentration zone in the OJD2 region exhibited a characteristic of advancing from south to north. The main reasons for the occurrence of jumped O3 pollution in Beijing could be summarized as local accumulation caused by unfavorable meteorological conditions and regional transmission impact. The occurrence of jump-type ozone pollution was characterized by an increase in southerly wind frequency, temperature rise, pressure decrease, and precipitation decrease. The increase in southerly wind frequency provided conditions for the transport of O3 and its precursors, and rapid photochemical reactions occurred under local high temperatures, with less superimposed precipitation, comprehensively pushing up the ozone concentration level of OJD2. Six air mass transporting pathways were identified through clustering analysis; the air mass from the direction north of OJD2 decreased by 11.2%, whereas the air mass from the south and east directions increased by 6.7% and 4.4%, respectively, with the air masses mainly transmitting over short distances. The ozone concentration corresponding to the south and east directions was relatively high, making a significant contribution to Beijing's pollution. The analysis of potential source areas revealed that the main potential source areas of OJD2 ozone pollution were the central, southern, and eastern parts of Beijing-Tianjin-Hebei, which contributed 82.6% to the pollution trajectory. There was a significant contribution of regional transport during jump-type ozone pollution, and it is necessary to strengthen joint prevention and control in the Beijing-Tianjin-Hebei Region.

7.
J Ethnopharmacol ; 326: 117967, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38431111

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Psoraleae Fructus (PF), the dried fruit of Psoralea corylifolia L., is a commonly used traditional medicine that has contributed to the treatment of orthopedic diseases for thousands of years in China. However, recent PF-related liver injury reports have drawn widespread attention regarding its potential hepatotoxicity risks. AIM OF THE STUDY: This study was aimed to evaluate the long-term efficacy and chronic toxicity of PF using a 26-week administration experiment on rats in order to simulate the clinical usage situation. MATERIALS AND METHODS: The PF aqueous extract was consecutively administrated to rats daily at dosages of 0.7, 2.0, and 5.6 g/kg (equivalent to 1-8 times the clinical doses for humans) for as long as 26 weeks. Samples were collected after 13, 26, and 32 weeks (withdrawal for 6 weeks) since the first administration. The chronic toxicity of PF was evaluated by conventional toxicological methods, and the efficacy of PF was evaluated by osteogenic effects in the natural growth process. RESULTS: In our experiments, only the H group (5.6 g/kg) for 26-week PF treatment demonstrated liver or kidney injury, which the injuries were reversible after 6 weeks of withdrawal. Notably, the PF treatment beyond 13 weeks showed significant benefits for bone growth and development in rats, with a higher benefit-risk ratio in female rats. CONCLUSIONS: PF displayed a promising benefit-risk ratio in the treatment and prevention of osteoporosis, a disease that lacks effective medicine so far. This is the first study to elucidate the benefit-risk balance associated with clinical dosage and long-term use of PF, thereby providing valuable insights for rational clinical use and risk control of PF.


Assuntos
Medicamentos de Ervas Chinesas , Fabaceae , Psoralea , Humanos , Ratos , Feminino , Animais , Frutas , Razão de Chances , Fígado , Medicamentos de Ervas Chinesas/toxicidade
8.
J Pathol ; 263(1): 74-88, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38411274

RESUMO

Fascin actin-bundling protein 1 (Fascin) is highly expressed in a variety of cancers, including esophageal squamous cell carcinoma (ESCC), working as an important oncogenic protein and promoting the migration and invasion of cancer cells by bundling F-actin to facilitate the formation of filopodia and invadopodia. However, it is not clear how exactly the function of Fascin is regulated by acetylation in cancer cells. Here, in ESCC cells, the histone acetyltransferase KAT8 catalyzed Fascin lysine 41 (K41) acetylation, to inhibit Fascin-mediated F-actin bundling and the formation of filopodia and invadopodia. Furthermore, NAD-dependent protein deacetylase sirtuin (SIRT) 7-mediated deacetylation of Fascin-K41 enhances the formation of filopodia and invadopodia, which promotes the migration and invasion of ESCC cells. Clinically, the analysis of cancer and adjacent tissue samples from patients with ESCC showed that Fascin-K41 acetylation was lower in the cancer tissue of patients with lymph node metastasis than in that of patients without lymph node metastasis, and low levels of Fascin-K41 acetylation were associated with a poorer prognosis in patients with ESCC. Importantly, K41 acetylation significantly blocked NP-G2-044, one of the Fascin inhibitors currently being clinically evaluated, suggesting that NP-G2-044 may be more suitable for patients with low levels of Fascin-K41 acetylation, but not suitable for patients with high levels of Fascin-K41 acetylation. © 2024 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Proteínas de Transporte , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteínas dos Microfilamentos , Sirtuínas , Humanos , Acetilação , Actinas/metabolismo , Linhagem Celular Tumoral , Neoplasias Esofágicas/patologia , Histona Acetiltransferases/metabolismo , Metástase Linfática , Sirtuínas/metabolismo
9.
Appl Environ Microbiol ; 90(3): e0211023, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38391210

RESUMO

Ultraviolet (UV) A radiation (315-400 nm) is the predominant component of solar UV radiation that reaches the Earth's surface. However, the underlying mechanisms of the positive effects of UV-A on photosynthetic organisms have not yet been elucidated. In this study, we investigated the effects of UV-A radiation on the growth, photosynthetic ability, and metabolome of the edible cyanobacterium Nostoc sphaeroides. Exposures to 5-15 W m-2 (15-46 µmol photons m-2 s-1) UV-A and 4.35 W m-2 (20 µmol photons m-2 s-1) visible light for 16 days significantly increased the growth rate and biomass production of N. sphaeroides cells by 18%-30% and 15%-56%, respectively, compared to the non-UV-A-acclimated cells. Additionally, the UV-A-acclimated cells exhibited a 1.8-fold increase in the cellular nicotinamide adenine dinucleotide phosphate (NADP) pool with an increase in photosynthetic capacity (58%), photosynthetic efficiency (24%), QA re-oxidation, photosystem I abundance, and cyclic electron flow (87%), which further led to an increase in light-induced NADPH generation (31%) and ATP content (83%). Moreover, the UV-A-acclimated cells showed a 2.3-fold increase in ribulose-1,5-bisphosphate carboxylase/oxygenase activity, indicating an increase in their carbon-fixing capacity. Gas chromatography-mass spectrometry-based metabolomics further revealed that UV-A radiation upregulated the energy-storing carbon metabolism, as evidenced by the enhanced accumulation of sugars, fatty acids, and citrate in the UV-A-acclimated cells. Therefore, our results demonstrate that UV-A radiation enhances energy flow and carbon assimilation in the cyanobacterium N. sphaeroides.IMPORTANCEUltraviolet (UV) radiation exerts harmful effects on photo-autotrophs; however, several studies demonstrated the positive effects of UV radiation, especially UV-A radiation (315-400 nm), on primary productivity. Therefore, understanding the underlying mechanisms associated with the promotive effects of UV-A radiation on primary productivity can facilitate the application of UV-A for CO2 sequestration and lead to the advancement of photobiological sciences. In this study, we used the cyanobacterium Nostoc sphaeroides, which has an over 1,700-year history of human use as food and medicine, to explore its photosynthetic acclimation response to UV-A radiation. As per our knowledge, this is the first study to demonstrate that UV-A radiation increases the biomass yield of N. sphaeroides by enhancing energy flow and carbon assimilation. Our findings provide novel insights into UV-A-mediated photosynthetic acclimation and provide a scientific basis for the application of UV-A radiation for optimizing light absorption capacity and enhancing CO2 sequestration in the frame of a future CO2 neutral, circular, and sustainable bioeconomy.


Assuntos
Nostoc , Raios Ultravioleta , Humanos , Biomassa , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Nostoc/metabolismo , Fotossíntese/fisiologia
10.
BMC Gastroenterol ; 24(1): 77, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373892

RESUMO

BACKGROUND: Several studies have found that primary sclerosing cholangitis (PSC) and inflammatory bowel disease (IBD) are closely associated. However, the direction and causality of their interactions remain unclear. Thus, this study employs Mendelian Randomization to explore whether there are causal associations of genetically predicted PSC with IBD. METHODS: Genetic variants associated with the genome-wide association study (GWAS) of PSC were used as instrumental variables. The statistics for IBD, including ulcerative colitis (UC), and Crohn's disease (CD) were derived from GWAS. Then, five methods were used to estimate the effects of genetically predicted PSC on IBD, including MR Egger, Weighted median (WM), Inverse variance weighted (IVW), Simple mode, and Weighted mode. Last, we also evaluated the pleiotropic effects, heterogeneity, and a leave-one-out sensitivity analysis that drives causal associations to confirm the validity of the analysis. RESULTS: Genetically predicted PSC was significantly associated with an increased risk of UC, according to the study (odds ratio [OR] IVW= 1.0014, P<0.05). However, none of the MR methods found significant causal evidence of genetically predicted PSC in CD (All P>0.05). The sensitivity analysis results showed that the causal effect estimations of genetically predicted PSC on IBD were robust, and there was no horizontal pleiotropy or statistical heterogeneity. CONCLUSIONS: Our study corroborated a causal association between genetically predicted PSC and UC but did not between genetically predicted PSC and CD. Then, we identification of shared SNPs for PSC and UC, including rs3184504, rs9858213, rs725613, rs10909839, and rs4147359. More animal experiments and clinical observational studies are required to further clarify the underlying mechanisms of PSC and IBD.


Assuntos
Colangite Esclerosante , Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Animais , Colangite Esclerosante/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Doenças Inflamatórias Intestinais/genética , Colite Ulcerativa/genética , Doença de Crohn/genética
11.
Cancer Manag Res ; 16: 95-111, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370535

RESUMO

Background: Several studies suggest that Proteasome 26S Subunit, ATPase (PSMC) family genes are of great importance in tumor progression and spreading, but the study for systematic evaluation of the function of PSMC genes in hepatocellular carcinoma (HCC) is currently lacking. Methods: The functions of PSMC genes in HCC were analyzed using multiple online databases, including the TCGA database, GEO database, HPA database, cBioPortal database, DAVID, and KEGG pathway. Experiments were later conducted to verify PSMC expression. Results: High levels of PSMC gene expression were detected in HCC tissues and PSMCs exhibited potentially powerful abilities in diagnosing HCC patients. All PSMC proteins are expressed to varying degrees in HCC tissues and high expression of the PSMC genes lead to poor prognosis in patients with HCC. Moreover, DNA methylation involves the regulation of the expression of PSMC2 and PSMC5 in HCC, and the levels of methylation of PSMC2 or PSMC5 correlate positively with patient overall survival in HCC patients. The copy number alteration and mutation of PSMC genes were observed and related to the expression of PSMCs in HCC. Functional enrichment analysis showed that many highly co-expressed genes of PSMCs had a potential role in tumor progression and metastasis, which merited further in-depth study. Functional network analysis also suggests that the primary biological function of PSMC genes is the regulation of protein homeostasis and energy metabolism in HCC. Moreover, the expression levels of PSMCs are related to immune cell infiltrates and immunomodulatory factors in HCC. Conclusion: Our study indicates that PSMC genes are the potential target for precision immunotherapy and novel prognostic biomarkers for HCC.

12.
J Addict Med ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408186

RESUMO

OBJECTIVES: To provide valuable insights for targeted cancer screening among high-risk patients, we analyzed the global and regional burden of neoplasms resulting from alcohol consumption between 1990 and 2019. METHODS: The information used in this study was collected from the Global Burden of Disease 2019 dataset. Initially, the database was used to extract details of mortality rates, disability-adjusted life years (DALYs), and the number of individuals affected by alcohol-related neoplasms (ARNs). Subsequently, the data were compared by cancer type, sex, age, region, and sociodemographic index. Furthermore, the study involved the calculation and comparison of estimated annual percentage changes in age-standardized DALYs rates (ASDRs) and mortality rates. RESULTS: The impact of alcohol on the burden of cancer varied by type of cancer, sex, age, and geographical location. Notably, males exhibited significantly higher ASDRs compared with females. Specifically, in 2019, alcohol emerged as the primary contributor to the number of DALYs associated with esophageal cancer, followed by liver cancer and colorectal cancer in men. Patients aged 50+ years exhibited a heightened rate of DALYs associated with ARNs. From 1990 to 2019, ASDRs among individuals with ARNs did not exhibit a decline in low-middle and low sociodemographic index regions. CONCLUSIONS: Alcohol consumption represents a significant risk factor for the burden of cancer, particularly within the realm of digestive system malignancies. Consequently, targeted cancer screening efforts should be directed toward the population that engages in alcohol drinking, with a particular focus on men aged 50 years and older, residing in economically disadvantaged areas.

13.
Magn Reson Imaging ; 107: 130-137, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38278311

RESUMO

PURPOSE: To investigate the diagnostic efficacy of T1ρ dispersion and Gd-EOB-DTPAenhanced T1mapping in the identification of early liver fibrosis (LF) and non-alcoholic steatohepatitis (NASH) in a non-alcoholic fatty liver disease (NAFLD) rabbit model induced by a high-fat diet using histopathological findings as the standard reference. METHODS: A total of sixty rabbits were randomly allocated into the standard control group (n = 12) and the NAFLD model groups (8 rabbits per group) corresponding to different high-fat high cholesterol diet feeding weeks. All rabbits underwent noncontrast transverse T1ρ mapping with varying spin-locking frequencies (FSL = 0 Hz and 500 Hz), native T1 mapping, and Gd-EOB-DTPA-enhanced T1 mapping during the hepatobiliary phase. The histopathological findings were assessed based on the NASH CRN Scoring System. Statistical analyses were conducted using the intraclass correlation coefficient, analysis of variance, multiple linear regression, and receiver operating characteristics. RESULTS: Except for native T1, T1ρ, T1ρ dispersion, HBP T1, and △T1 values significantly differed among different liver fibrosis groups (F = 14.414, 18.736, 10.15, and 9.799, respectively; all P < 0.05). T1ρ, T1ρ dispersion, HBP T1, and △T1 values also exhibited significant differences among different NASH groups (F = 4.138, 4.594, 21.868, and 22.678, respectively; all P < 0.05). In the multiple regression analysis, liver fibrosis was the only factor that independently influenced T1ρ dispersion (R2 = 0.746, P = 0.000). Among all metrics, T1ρ dispersion demonstrated the best area under curve (AUC) for identifying early LF (≥ F1 stage) and significant LF (≥ F2 stage) (AUC, 0.849 and 0.916, respectively). The performance of △T1 and HBP T1 (AUC, 0.948 and 0.936, respectively) were better than that of T1ρ and T1ρ dispersion (AUC, 0.762 and 0.769, respectively) for diagnosing NASH. CONCLUSION: T1⍴ dispersion may be suitable for detecting liver fibrosis in the complex background of NAFLD, while Gd-EOB-DTPA enhanced T1 mapping is superior to nonenhanced T1⍴ mapping (T1⍴ and T1⍴ dispersion) for identifying NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Coelhos , Hepatopatia Gordurosa não Alcoólica/patologia , Fígado/diagnóstico por imagem , Fígado/patologia , Meios de Contraste , Imageamento por Ressonância Magnética , Gadolínio DTPA , Cirrose Hepática/patologia , Medição de Risco
14.
CNS Neurosci Ther ; 30(4): e14519, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37905694

RESUMO

BACKGROUND: The microbiota-gut-brain axis plays a critical role in neuropsychiatric disorders, particularly anxious depression, and attracts more attention gradually. Zhi Zi Chi decoction (ZZCD) consisting of Gardenia jasminoides J. Ellis and Glycine max (L.) Merr, is a classic formula in clinic and widely applied in anxiety and depression treatment. However, the underlying mechanisms of regulating microbiota-gut-brain axis in the treatment of anxious depression by oral administration of ZZCD remain elusive. MATERIALS AND METHODS: In this project, we clarified the origin and preparation methods of the Gardenia jasminoides J. Ellis and Glycine max (L.) Merr and examined the chemical ingredients of ZZCD by liquid chromatograph mass spectrometer. Then, corticosterone combined with chronic restraint stress was applied to establish an anxious depression model. After treated with ZZCD standard decoction, based on enzyme-linked immunosorbent assay (ELISA), 16S rRNA technology, high-throughput sequencing, quantitative RT-PCR and fecal microbiota transplantation (FMT), the multiple associations between nucleus accumbens and intestinal flora in anxious depression mice were determined to clarify the mechanism of ZZCD in the treatment of anxiety and depression disorder. RESULTS: We found various substances with antidepressant and antianxiety properties in ZZCD such as rosiridin and oleanolic acid. ZZCD could alleviate depressive and anxiety behaviors in anxious depression mice via regulating the disturbance of gut microbiota. Meanwhile, the bioactive compounds of ZZCD might directly active on neurodevelopment and neuroimmune-related genes. Furthermore, the secretion of prolactin and estrogen, and interfering with mitogen-activated protein kinase (MAPK) and tumor necrosis factor (TNF) signaling pathways were mainly involved in the multi-target therapeutic effects of ZZCD against anxiety and depression. CONCLUSIONS: These findings suggested that ZZCD exerts antidepressant effects pleiotropically through modulating the microbiota-gut-brain.


Assuntos
Medicamentos de Ervas Chinesas , Gardenia , Camundongos , Animais , Depressão/tratamento farmacológico , Depressão/etiologia , Gardenia/química , Corticosterona , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Eixo Encéfalo-Intestino , RNA Ribossômico 16S , Sementes/química , Antidepressivos
15.
Dev Comp Immunol ; 152: 105123, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38135022

RESUMO

This study presents a genome-wide identification of NOD-like receptors (NLRs) in the golden pompano, key to its innate immunity. We identified 30 ToNLRs, analyzing their chromosomal positions, characteristics, evolutionary relationships, evidence of positive selection, and synteny with the yellowtail kingfish. Our findings categorize these NLRs into three main subgroups: NLRA, NLRC, and the distinct ToNLRX1. Post-exposure to Streptococcus agalactiae, most ToNLRs increased expression in the spleen, whereas NLRC3like13, NLRC3like16, and NLRC3like19 so in the kidneys. Upon Cryptocaryon irritans exposure, we categorized our groups based on the site of infection into the control group (BFS), the trophont-attached skin (TAS), and the nearby region skin (NRS). ToAPAF1 and ToNOD1 expressions rose in the NRS, in contrast to decreased expressions of ToNLRC5, ToNWD1 and ToCIITA. Other ToNLRs showed variable expressions in the TAS. Overall, this research lays the groundwork for further exploration of innate immunity in the golden pompano.


Assuntos
Doenças dos Peixes , Perciformes , Animais , Proteínas NLR/genética , Peixes , Imunidade Inata , Streptococcus agalactiae , Proteínas de Peixes/metabolismo
16.
Biosens Bioelectron ; 247: 115946, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38141443

RESUMO

Surveillance of airborne viruses in crowded indoor spaces is crucial for managing outbreaks, as highlighted by the SARS-CoV-2 pandemic. However, the rapid and on-site detection of fast-mutating viruses, such as SARS-CoV-2, in complex environmental backgrounds remains challenging. Our study introduces a machine learning (ML)-driven surface-enhanced Raman spectroscopy (SERS) approach for detecting viruses within environmental dust matrices. By decomposing intact virions into individual structural components via a Raman-background-free lysis protocol and concentrating them into nanogap SERS hotspots, we significantly enhance the SERS signal intensity and fingerprint information density from viral structural components. Utilizing Principal Component Analysis (PCA), we establish a robust connection between the SERS data of these structural components and their biological sequences, laying a solid foundation for virus detection through SERS. Furthermore, we demonstrate reliable quantitative detection of SARS-CoV-2 using identified SARS-CoV-2 peaks at concentrations down to 102 pfu/ml through Gaussian Process Regression (GPR) and a digital SERS methodology. Finally, applying a Principal Component Analysis-Linear Discriminant Analysis (PCA-LDA) algorithm, we identify SARS-CoV-2, influenza A virus, and Zika virus within an environmental dust background with over 86% accuracy. Therefore, our ML-driven SERS approach holds promise for rapid environmental virus monitoring to manage future outbreaks.


Assuntos
Técnicas Biossensoriais , COVID-19 , Infecção por Zika virus , Zika virus , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Análise Espectral Raman , Aprendizado de Máquina , Vírion , Poeira
18.
Environ Sci Technol ; 57(51): 21801-21814, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38078756

RESUMO

Cyanobacterial harmful algal blooms (cHABs) have the potential to adversely affect public health through the production of toxins such as microcystins, which consist of numerous molecularly distinct congeners. Microcystins have been observed in the atmosphere after emission from freshwater lakes, but little is known about the health effects of inhaling microcystins and the factors contributing to microcystin aerosolization. This study quantified total microcystin concentrations in water and aerosol samples collected around Grand Lake St. Marys (GLSM), Ohio. Microcystin concentrations in water samples collected on the same day ranged from 13 to 23 µg/L, dominated by the d-Asp3-MC-RR congener. In particulate matter <2.5 µm (PM2.5), microcystin concentrations up to 156 pg/m3 were detected; the microcystins were composed primarily of d-Asp3-MC-RR, with additional congeners (d-Asp3-MC-HtyR and d-Asp3-MC-LR) observed in a sample collected prior to a storm event. The PM size fraction containing the highest aerosolized MC concentration ranged from 0.44 to 2.5 µm. Analysis of total bacteria by qPCR targeting 16S rDNA revealed concentrations up to 9.4 × 104 gc/m3 in aerosol samples (≤3 µm), while a marker specific to cyanobacteria was not detected in any aerosol samples. Concentrations of aerosolized microcystins varied even when concentrations in water were relatively constant, demonstrating the importance of meteorological conditions (wind speed and direction) and aerosol generation mechanism(s) (wave breaking, spillway, and aeration systems) when evaluating inhalation exposure to microcystins and subsequent impacts on human health.


Assuntos
Cianobactérias , Proliferação Nociva de Algas , Humanos , Microcistinas/análise , Toxinas de Cianobactérias , Lagos/análise , Lagos/microbiologia , Aerossóis , Água , Atmosfera/análise
19.
Clin Exp Med ; 23(8): 4633-4646, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37930604

RESUMO

Acquired aplastic anemia (AA) is a recognized immune-mediated disorder and abnormally activated T lymphocyte-mediated bone marrow destruction is considered to be its main pathogenesis. Whether abnormal activation of T lymphocytes would also damage bone marrow-derived MSCs remains to be further studied. The aim of this study was to analyze the extent of T lymphocyte activation and the levels of Th1/Th2 cytokines of AA patients, and to explore the immunomodulatory effects of BM-MSCs on IL-2-stimulated T lymphocyte activation and cytokine production in vitro by means of transwell co-culture assay and flow cytometry measurement. The intermediate (CD25+) activated T cells were dominant in peripheral blood, while the early (CD69+) and late (HLA-DR+) activated T cells were predominant in bone marrow. Severe AA patients have an obviously higher proportion of CD3+CD8+CD69+ T cells than NSAA cases. The levels of IL-2 and IL-6 in AA patients were slightly elevated and INF-γ was mildly decreased in comparison with normal individuals. BM-MSCs derived from AA could not effectively inhibit the IL-2-induced activation of T cells with higher proportions of CD25+CD3+CD4+, CD69+CD3+CD4+ and CD25+CD3+CD8+ T cells after co-culture, and they showed a decreased ability to balance the Th1/Th2 cytokine production. Moreover, they had less robust osteogenic differentiation and more prone to adipogenic differentiation. We concluded that abnormally excessive T cell activation accompanied by abnormal cytokine secretion may impair the function of BM-MSCs in children with aplastic anemia.


Assuntos
Anemia Aplástica , Células-Tronco Mesenquimais , Criança , Humanos , Medula Óssea/patologia , Linfócitos T CD8-Positivos , Interleucina-2 , Osteogênese
20.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(5): 1523-1530, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-37846711

RESUMO

OBJECTIVE: To explore the effect of human bone marrow mesenchymal stem cells (MSCs) with ectopic high OCT4 expression on T-cell proliferation, activation and secretion in vitro. METHODS: Peripheral blood mononuclear cells were isolated from healthy children. Anti-CD3 and anti-CD28 monoclonal antibodies were used to activate T lymphocytes, which were stimulated by interleukin (IL)-2 for one week in vitro. Then MSCs with ectopic high OCT4 expression (MSC-OCT4) were co-cultured with activated T lymphocytes. After one week of co-culture, the supernatant was collected and the levels of Th1/Th2 cytokines [IL-2, IL-4, IL-6, IL-10, tumor necrosis factor (TNF)-α and interferon (IFN)-γ] were determined by flow cytometry. The lymphocytes after one week of co-culture were collected and counted by Countstar software. After the proportions of activated/inactivated T cell subsets were determined by flow cytometry, the absolute lymphocyte counts were calculated and expressed as mean ± standard deviation. RESULTS: Compared with control T cell alone culture group, the proliferation of CD3+ T cells, CD3+CD4+ T cells, and CD3+CD8+ T cells were significantly inhibited in MSC group and MSC-OCT4 group. Compared with MSC, MSC-OCT4 could inhibit CD3+CD8+ T cell proliferation better (P =0.049), and mainly inhibited early T cell activation. Compared with control T cell alone culture group, the levels of IL-2 and INF-γ were significantly down-regulated both in MSC group and MSC-OCT4 group.After co-culture with T cells for one week, the level of IL-6 significantly increased in MSC group and MSC-OCT4 group compared with that before co-culture. Compared with control MSC group, MSC-OCT4 group had higher viable cell numbers after 1 week of co-culture (P =0.019), and could resist the inhibition of proliferation by higher concentration of mitomycin C. CONCLUSION: Both MSC and MSC-OCT4 can inhibit the proliferation and activation of IL-2-stimulated T cells in vitro. After overexpression of OCT4, MSC has better proliferation ability in vitro and can inhibit the proliferation of CD3+CD8+ T cells more effectively, which may have a better and more lasting immunosuppressive ability to regulate the balance of Th1/Th2.


Assuntos
Interleucina-2 , Células-Tronco Mesenquimais , Criança , Humanos , Células da Medula Óssea , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , Células Cultivadas , Interleucina-6/metabolismo , Leucócitos Mononucleares/metabolismo , Ativação Linfocitária , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA