Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36501475

RESUMO

In order to understand the ablation behaviors of CFRP laminates in an atmospheric environment irradiated by continuous wave laser, CFRP laminates were subjected to a 1080-nm continuous wave laser (6-mm laser spot diameter), with different laser power densities carried out in this paper. The internal delamination damage in CFRP laminates was investigated by C-Scan. The rear- and front-face temperature of CFRP laminates were monitored using the FLIR A 655 sc infrared camera, and the rear-face temperature was monitored by K type thermocouples. The morphology of ablation damage, the area size of the damaged heat affected zone (HAZ), crater depth, thermal ablation rate, mass ablation rate, line ablation rate, etc., of CFRP laminates were determined and correlated to the irradiation parameters. It is found that the area size of the damage HAZ, mass ablation rate, line ablation rate, etc., increased as the laser power densities. The dimensionless area size of the damaged HAZ decreased gradually along the thickness direction of the laser irradiation surface.

2.
Materials (Basel) ; 14(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34885370

RESUMO

Carbon fiber-reinforced polymer (CFRP) has the advantages of a high strength-weight ratio and excellent fatigue resistance and has been widely used in aerospace, automotive, civil infrastructure, and other fields. The properties of CFRP materials under high temperatures are a key design issue. This paper presents the quasi-static tensile mechanical properties of unidirectional CFRP plates at temperatures ranging from 20 to 600 °C experimentally. The laser displacement transducer was adopted to capture the in situ displacement of the tested specimen. The results showed that the tensile strength of the CFRP specimen was affected by the high-temperature effect significantly, which dropped 68% and 16% for the 200 and 600 °C, respectively, compared with that of the room temperature. The degradation measured by the laser transducer system was more intensive compared with previous studies. The elastic modulus decreased to about 29% of the room temperature value at 200 °C. With the evaporation of the resin, the failure modes of the CFRP experienced brittle fracture to pullout of the fiber tow. The study provides accurate tensile performance of the CFRP plate under high-temperature exposure, which is helpful for the engineering application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA