RESUMO
Hydrogen is emerging as a promising zero-carbon emission energy source for vehicle engines. However, the full potential of hydrogen engines and their economic viability remain uncertain. Additionally, comprehensive data on ultralean combustion performance and emissions as well as strategies for improving HC and CO emissions are lacking. This study addresses these gaps by thoroughly examining hydrogen combustion and emissions in a 1.5 L engine. Incorporating a hydrogen direct injection (HDI) system and an electric supercharger, we investigated emissions under various piston ring tensions during lean limit operations. Our findings reveal that hydrogen exhibits a fast combustion speed in the engine within 20 °CA, along with excellent ultralean burn performance, expanding the lambda limit to 3. As the load increases, the thermal efficiency significantly improves, reaching a maximum of 40.8%. NOx emissions peak at a lambda of 1.1 but decrease notably above 2.7, with levels below 10 ppm. At a lambda near 3, NOx emissions hover between 0 and 5 ppm, approaching zero emissions. Additionally, lubricating oil consumption during engine operation yields a minor HC and CO emissions. Higher tension piston rings result in lower HC and CO emissions, typically below 5 ppm, nearing zero emission levels.
RESUMO
Atherosclerosis represents the major cause of mortality worldwide and triggers higher risk of acute cardiovascular events. Pericytes-endothelial cells (ECs) communication is orchestrated by ligand-receptor interaction generating a microenvironment which results in intraplaque neovascularization, that is closely associated with atherosclerotic plaque instability. Notoginsenoside R1 (R1) exhibits anti-atherosclerotic bioactivity, but its effect on angiogenesis in atherosclerotic plaque remains elusive. The aim of our study is to explore the therapeutic effect of R1 on vulnerable plaque and investigate its potential mechanism against intraplaque neovascularization. The impacts of R1 on plaque stability and intraplaque neovascularization were assessed in ApoE-/- mice induced by high-fat diet. Pericytes-ECs direct or non-direct contact co-cultured with VEGF-A stimulation were used as the in vitro angiogenesis models. Overexpressing Ang1 in pericytes was performed to investigate the underlying mechanism. In vivo experiments, R1 treatment reversed atherosclerotic plaque vulnerability and decreased the presence of neovessels in ApoE-/- mice. Additionally, R1 reduced the expression of Ang1 in pericytes. In vitro experiments demonstrated that R1 suppressed pro-angiogenic behavior of ECs induced by pericytes cultured with VEGF-A. Mechanistic studies revealed that the anti-angiogenic effect of R1 was dependent on the inhibition of Ang1 and Tie2 expression, as the effects were partially reversed after Ang1 overexpressing in pericytes. Our study demonstrated that R1 treatment inhibited intraplaque neovascularization by governing pericyte-EC association via suppressing Ang1-Tie2/PI3K-AKT paracrine signaling pathway. R1 represents a novel therapeutic strategy for atherosclerotic vulnerable plaques in clinical application.
Assuntos
Angiopoietina-1 , Aterosclerose , Células Endoteliais , Ginsenosídeos , Neovascularização Patológica , Pericitos , Placa Aterosclerótica , Receptor TIE-2 , Animais , Ginsenosídeos/farmacologia , Camundongos , Pericitos/efeitos dos fármacos , Pericitos/metabolismo , Aterosclerose/tratamento farmacológico , Placa Aterosclerótica/tratamento farmacológico , Receptor TIE-2/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Neovascularização Patológica/tratamento farmacológico , Angiopoietina-1/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Comunicação Celular/efeitos dos fármacos , Humanos , Transdução de Sinais/efeitos dos fármacos , Apolipoproteínas E , Dieta Hiperlipídica , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
This experimental study investigates the impact of water injection into intake ports on combustion and emissions in gasoline engines. It also examines particle size distribution at various water-to-fuel ratios and explores the combined effects of water injection and compression ratios in gasoline engines. The results indicate that water injection effectively mitigates engine knock, reduces peak firing pressures, and moderates heat release rates through charge cooling. Advancing ignition timing with water injection advances combustion, resulting in reduced specific fuel consumption, particularly under moderate load conditions. Water injection lowers NOx emissions by reducing combustion temperatures but increases unburned THC emissions due to inhibited oxidation reaction rates. Minor effects were observed on CO emissions. Furthermore, particle numbers were significantly reduced with water injection, particularly in the nucleation mode particles. The simultaneous application of a higher compression ratio and water injection yields substantial improvements in fuel consumption with minimal impact on NOx and THC emissions.
RESUMO
Garlic (Allium sativum) is a functional food containing multiple bioactive compounds that find widespread applications in culinary and medicinal practices. It consists of multiple chemical components, including allicin and alliin. This article offers a comprehensive review of the protective effects of garlic extracts and their active constituents on the vascular system. In vitro and in vivo experiments have shown that garlic extracts and their active ingredients possess various bioactive properties. These substances demonstrate beneficial effects on blood vessels by demonstrating anti-inflammatory and antioxidant activities, inhibiting lipid accumulation and migration, preventing lipid peroxidation, promoting angiogenesis, reducing platelet aggregation, enhancing endothelial function, and inhibiting endothelial cell apoptosis. In clinical studies, garlic and its extracts have demonstrated their efficacy in managing vascular system diseases, including atherosclerosis, diabetes, and high cholesterol levels. In summary, these studies highlight the potential therapeutic roles and underlying mechanisms of garlic and its constituents in managing conditions like diabetes, atherosclerosis, ischemic diseases, and other vascular disorders.
Assuntos
Aterosclerose , Diabetes Mellitus , Alho , Humanos , Alho/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Diabetes Mellitus/tratamento farmacológicoRESUMO
Myocardial infarction (MI), an acute cardiovascular disease characterized by coronary artery blockage, inadequate blood supply, and subsequent ischemic necrosis of the myocardium, is one of the leading causes of death. The cellular, physiological, and pathological responses following MI are complex, involving multiple intertwined pathological mechanisms. Hypoxia-inducible factor-1 (HIF-1), a crucial regulator of hypoxia, plays a significant role in of the development of MI by modulating the behavior of various cells such as cardiomyocytes, endothelial cells, macrophages, and fibroblasts under hypoxic conditions. HIF-1 regulates various post-MI adaptive reactions to acute ischemia and hypoxia through various mechanisms. These mechanisms include angiogenesis, energy metabolism, oxidative stress, inflammatory response, and ventricular remodeling. With its crucial role in MI, HIF-1 is expected to significantly influence the treatment of MI. However, the drugs available for the treatment of MI targeting HIF-1 are currently limited, and most contain natural compounds. The development of precision-targeted drugs modulating HIF-1 has therapeutic potential for advancing MI treatment research and development. This study aimed to summarize the regulatory role of HIF-1 in the pathological responses of various cells following MI, the diverse mechanisms of action of HIF-1 in MI, and the potential drugs targeting HIF-1 for treating MI, thus providing the theoretical foundations for potential clinical therapeutic targets.
Assuntos
Fator 1 Induzível por Hipóxia , Infarto do Miocárdio , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Células Endoteliais/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismoRESUMO
BACKGROUND: Bladder cancer (BLCA) is a malignancy that frequently metastasizes and leads to poor patient prognosis. It is essential to understand the molecular mechanisms underlying the progression and metastasis of BLCA and identify potential biomarkers. METHODS: The expression of peptidase inhibitor 16 (PI16) was analysed using quantitative PCR, immunoblotting and immunohistochemistry assays. The functional roles of PI16 were evaluated using wound healing, transwell, and human umbilical vein endothelial cell tube formation assays, as well as in vivo tumour models. The effects of PI16 on nuclear factor κB (NF-κB) signalling activation were examined using luciferase reporter gene systems, immunoblotting and immunofluorescence assays. Co-immunoprecipitation was used to investigate the interaction of PI16 with annexin-A1 (ANXA1) and NEMO. RESULTS: PI16 expression was downregulated in bladder cancer tissues, and lower PI16 levels correlated with disease progression and poor survival in patients with BLCA. Overexpressing PI16 inhibited BLCA cell growth, motility, invasion and angiogenesis in vitro and in vivo, while silencing PI16 had the opposite effects. Mechanistically, PI16 inhibited the activation of the NF-κB pathway by interacting with ANXA1, which inhibited K63 and M1 ubiquitination of NEMO. CONCLUSIONS: These results indicate that PI16 functions as a tumour suppressor in BLCA by inhibiting tumour growth and metastasis. Additionally, PI16 may serve as a potential biomarker for metastatic BLCA.
Assuntos
NF-kappa B , Neoplasias da Bexiga Urinária , Humanos , NF-kappa B/metabolismo , Inibidores de Proteases , Transdução de Sinais , Ubiquitinação , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Linhagem Celular Tumoral , Proteínas de Transporte/genética , Glicoproteínas/genética , Glicoproteínas/metabolismoRESUMO
Hawthorn belongs to the rose family and is a type of functional food. It contains various chemicals, including flavonoids, terpenoids, and organic acid compounds. This study aimed to review the vascular protective effects and molecular mechanisms of hawthorn and its extracts on cardiovascular diseases (CVDs). Hawthorn has a wide range of biological functions. Evidence suggests that the active components of HE reduce oxidative stress and inflammation, regulate lipid levels to prevent lipid accumulation, and inhibit free cholesterol accumulation in macrophages and foam cell formation. Additionally, hawthorn extract (HE) can protect vascular endothelial function, regulate endothelial dysfunction, and promote vascular endothelial relaxation. It has also been reported that the effective components of hawthorn can prevent age-related endothelial dysfunction, increase cellular calcium levels, cause antiplatelet aggregation, and promote antithrombosis. In clinical trials, HE has been proved to reduce the adverse effects of CVDs on blood lipids, blood pressure, left ventricular ejection fraction, heart rate, and exercise tolerance. Previous studies have pointed to the benefits of hawthorn and its extracts in treating atherosclerosis and other vascular diseases. Therefore, as both medicine and food, hawthorn can be used as a new drug source for treating cardiovascular diseases.
Assuntos
Doenças Cardiovasculares , Crataegus , Doenças Vasculares , Humanos , Crataegus/química , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/induzido quimicamente , Volume Sistólico , Função Ventricular Esquerda , Extratos Vegetais/química , LipídeosRESUMO
Glioma is the most common malignant primary brain tumor with aggressiveness and poor prognosis. Although extracellular vesicles (EVs)-based cell-to-cell communication mediates glioma progression, the key molecular mediators of this process are still not fully understood. Herein, we elucidated an EVs-mediated transfer of suprabasin (SBSN), leading to the aggressiveness and progression of glioma. High levels of SBSN were positively correlated with clinical grade, predicting poor clinical prognosis of patients. Upregulation of SBSN promoted, while silencing of SBSN suppressed tumorigenesis and aggressiveness of glioma cells in vivo. EVs-mediated transfer of SBSN resulted in an increase in SBSN levels, which promoted the aggressiveness of glioma cells by enhancing migration, invasion, and angiogenesis of recipient glioma cells. Mechanistically, SBSN activated NF-κB signaling by interacting with annexin A1, which further induced Lys63-linked and Met1-linear polyubiquitination of NF-κB essential modulator (NEMO). In conclusion, the communication of SBSN-containing EVs within glioma cells drives the formation and development of tumors by activating NF-κB pathway, which may provide potential therapeutic target for clinical intervention in glioma.
Assuntos
Vesículas Extracelulares , Glioma , Humanos , Antígenos de Diferenciação/metabolismo , Linhagem Celular Tumoral , Vesículas Extracelulares/metabolismo , Glioma/patologia , Proteínas de Neoplasias/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , UbiquitinaçãoRESUMO
BACKGROUND: Patients with metastatic bladder cancer have very poor prognosis and predictive biomarkers are urgently needed for early clinical detection and intervention. In this study, we evaluate the effect and mechanism of Suprabasin (SBSN) on bladder cancer metastasis. METHODS: A tissue array was used to detect SBSN expression by immunohistochemistry. A tumour-bearing mouse model was used for metastasis evaluation in vivo. Transwell and wound-healing assays were used for in vitro evaluation of migration and invasion. Comprehensive molecular screening was achieved by western blotting, immunofluorescence, luciferase reporter assay, and ELISA. RESULTS: SBSN was found markedly overexpressed in bladder cancer, and indicated poor prognosis of patients. SBSN promoted invasion and metastasis of bladder cancer cells both in vivo and in vitro. The secreted SBSN exhibited identical biological function and regulation in bladder cancer metastasis, and the interaction of secreted SBSN and EGFR could play an essential role in activating the signalling in which SBSN enhanced the phosphorylation of EGFR and SRC kinase, followed with phosphorylation and nuclear location of STAT3. CONCLUSIONS: Our findings highlight that SBSN, and secreted SBSN, promote bladder cancer metastasis through activation of EGFR/SRC/STAT3 pathway and identify SBSN as a potential diagnostic and therapeutic target for bladder cancer.
Assuntos
Antígenos de Diferenciação/metabolismo , Neoplasias da Bexiga Urinária , Animais , Linhagem Celular Tumoral , Movimento Celular , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Camundongos , Metástase Neoplásica , Prognóstico , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Transdução de Sinais , Neoplasias da Bexiga Urinária/patologia , Quinases da Família src/metabolismoRESUMO
The use of anti-biofouling polymers has widespread potential for counteracting marine, medical, and industrial biofouling. The anti-biofouling action is usually related to the degree of surface wettability. This review is focusing on anti-biofouling polymers with special surface wettability, and it will provide a new perspective to promote the development of anti-biofouling polymers for biomedical applications. Firstly, current anti-biofouling strategies are discussed followed by a comprehensive review of anti-biofouling polymers with specific types of surface wettability, including superhydrophilicity, hydrophilicity, and hydrophobicity. We then summarize the applications of anti-biofouling polymers with specific surface wettability in typical biomedical fields both in vivo and in vitro, such as cardiology, ophthalmology, and nephrology. Finally, the challenges and directions of the development of anti-biofouling polymers with special surface wettability are discussed. It is helpful for future researchers to choose suitable anti-biofouling polymers with special surface wettability for specific biomedical applications.
RESUMO
HER2+ breast cancer (BC) is characterized by rapid growth, early recurrence, early metastasis, and chemoresistance. Trastuzumab is the most effective treatment for HER2+ BC and effectively reduces the risk of recurrence and death of patients. Resistance to trastuzumab results in cancer recurrence and metastasis, leading to poor prognosis of HER2+ BC. In the present study, we found that non-structural maintenance of chromosome condensin 1 complex subunit G (NCAPG) expression was highly upregulated in trastuzumab-resistant HER2+ BC. Ectopic NCAPG was positively correlated with tumor relapse and shorter survival in HER2+ BC patients. Moreover, overexpression of NCAPG promoted, while silencing of NCAPG reduced, the proliferative and anti-apoptotic capacity of HER2+ BC cells both in vitro and in vivo, indicating NCAPG reduces the sensitivity of HER2+ BC cells to trastuzumab and may confer trastuzumab resistance. Furthermore, our results suggest that NCAPG triggers a series of biological cascades by phosphorylating SRC and enhancing nuclear localization and activation of STAT3. To summarize, our study explores a crucial role for NCAPG in trastuzumab resistance and its underlying mechanisms in HER2+ BC, and suggests that NCAPG could be both a potential prognostic marker as well as a therapeutic target to effectively overcome trastuzumab resistance.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Resistencia a Medicamentos Antineoplásicos , Receptor ErbB-2/metabolismo , Fator de Transcrição STAT3/metabolismo , Trastuzumab/uso terapêutico , Quinases da Família src/metabolismo , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , Transdução de Sinais/efeitos dos fármacos , Trastuzumab/farmacologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genéticaRESUMO
The ubiquitin-proteasome system (UPS) is a tight homeostatic control mechanism of intracellular protein degradation and turnover involved in many human diseases. Proteasome inhibitors were initially developed as anticancer agents with potential benefits in the suppression of tumor growth. However, clinical trials of patients with solid tumors fail to demonstrate the same efficacy of these proteasome inhibitors. Here, we show that Parkin, an E3 ubiquitin ligase, is implicated in tumorigenesis and therapy resistance of hepatocellular carcinoma (HCC), the most common type of primary liver cancer in adults. Lower Parkin expression correlates with poor survival in patients with HCC. Ectopic Parkin expression enhances proteasome inhibitor-induced apoptosis and tumor suppression in HCC cells in vitro and in vivo. In contrast, knockdown of Parkin expression promotes apoptosis resistance and tumor growth. Mechanistically, Parkin promotes TNF receptor-associated factor (TRAF) 2 and TRAF6 degradation and thus facilitates nuclear factor-kappa-B (NF-κB) inhibition, which finally results in apoptosis. These findings reveal a direct molecular link between Parkin and protein degradation in the control of the NF-κB pathway and may provide a novel UPS-dependent strategy for the treatment of HCC by induction of apoptosis.
Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , NF-kappa B/antagonistas & inibidores , Inibidores de Proteassoma/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/genética , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Bases de Dados Genéticas , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Análise Serial de Tecidos , Transplante Heterólogo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genéticaRESUMO
BACKGROUND: It is well-established that activation of nuclear factor-kappa B (NF-κB) signaling plays important roles in cancer development and progression. However, the underlying mechanism by which the NF-κB pathway is constitutively activated in cancer remains largely unclear. The present study aimed to investigate the effect of PICALM interacting mitotic regulator (PIMREG) on sustaining NF-κB activation in breast cancer. METHODS: The underlying mechanisms in which PIMREG-mediated NF-κB constitutive activation were determined via immunoprecipitation, EMSA and luciferase reporter assays. The expression of PIMREG was examined by quantitative PCR and western blotting analyses and immunohistochemical assay. The effect of PIMREG on aggressiveness of breast cancer cell was measured using MTT, soft agar clonogenic assay, wound healing and transwell matrix penetration assays in vitro and a Xenografted tumor model in vivo. FINDINGS: PIMREG competitively interacted with the REL homology domain (RHD) of NF-κB with IκBα, and sustained NF-κB activation by promotion of nuclear accumulation and transcriptional activity of NF-κB via disrupting the NF-κB/IκBα negative feedback loop. PIMREG overexpression significantly enhanced NF-κB transactivity and promoted the breast cancer aggressiveness. The expression of PIMREG was markedly upregulated in breast cancer and positively correlated with clinical characteristics of patients with breast cancer, including the clinical stage, tumor-node-metastasis classification and poorer survival. INTERPRETATION: PIMREG promotes breast cancer aggressiveness via disrupting the NF-κB/IκBα negative feedback loop, which suggests that PIMREG might be a valuable prognostic factor and potential target for diagnosis and therapy of metastatic breast cancer. FUND: The science foundation of China, Guangdong Province, Guangzhou Education System, and the Science and Technology Program of Guangzhou.
Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , NF-kappa B/metabolismo , Proteínas Nucleares/genética , Transdução de Sinais , Animais , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Células Epiteliais/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Modelos Biológicos , Proteínas Nucleares/metabolismo , Prognóstico , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The Wnt/ß-catenin pathway is constitutively active and promotes multiple tumor processes, including breast cancer metastasis. However, the underlying mechanism by which the Wnt/ß-catenin pathway is constitutively activated in breast cancer metastasis remains unclear. Inhibition of Wnt antagonists is important for Wnt/ß-catenin signaling activation, and post-transcriptional regulation of these antagonists by microRNAs (miRNAs) might be a possible mechanism underlying signaling activation. Regulation of nuclear pre-mRNA domain-containing 1A (RPRD1A) is a known inhibitor of cell growth and Wnt/ß-catenin signaling activity, but the function and regulatory mechanism of RPRD1A in breast cancer have not been clarified. The aim of this study was to understand how regulators of the Wnt/ß-catenin pathway may play a role in the metastasis of this cancer. Methods: RPRD1A expression and its association with multiple clinicopathological characteristics was analyzed immunohistochemically in human breast cancer specimens. miR-454-3p expression was analyzed using real-time PCR. RPRD1A or miR-454-3p knockdown and overexpression were used to determine the underlying mechanism of their functions in breast cancer cells. Xenografted tumor model, 3D invasive culture, cell migration and invasion assays and sphere formation assay were used to determine the biofunction of RPRD1A and miR-454-3p in breast cancer. Electrophoretic mobility shift assay (EMSA), luciferase reporter assay, and RNA immunoprecipitation (RIP) were performed to study the regulation and underlying mechanisms of RPRD1A and miR-454-3p expression and their correlation with the Wnt/ß-catenin pathway in breast cancer. Results: The Wnt/ß-catenin signaling antagonist RPRD1A was downregulated and its upstream regulator miR-454-3p was amplified and overexpressed in metastatic breast cancer, and both were correlated with overall and relapse-free survival in breast cancer patients. The suppression by miR-454-3p on RPRD1A was found to activate Wnt/ß-catenin signaling, thereby promoting metastasis. Simultaneously, three other negative regulators of the Wnt/ß-catenin pathway, namely, AXIN2, dickkopf WNT signaling pathway inhibitor (DKK) 3 and secreted frizzled related protein (SFRP) 1, were also found to be targets of miR-454-3p and were involved in the signaling activation. miR-454-3p was found to be involved in early metastatic processes and to promote the stemness of breast cancer cells and early relapse under both in vitro and in vivo conditions. Conclusions: The findings indicate that miR-454-3p-mediated suppression of Wnt/ß-catenin antagonist RPRD1A, as well as AXIN2, DKK3 and SFRP1, sustains the constitutive activation of Wnt/ß-catenin signaling; thus, miR-454-3p and RPRD1A might be potential diagnostic and therapeutic targets for breast cancer metastasis.
Assuntos
Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/análise , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Metástase Neoplásica/patologia , Proteínas Repressoras/análise , Via de Sinalização Wnt , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteína Axina/análise , Quimiocinas/análise , Modelos Animais de Doenças , Feminino , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/análise , Proteínas de Membrana/análise , Modelos Teóricos , Transplante de Neoplasias , Reação em Cadeia da Polimerase em Tempo Real , Transplante HeterólogoRESUMO
Triptolide (TP) is a major active component of Tripterygium wilfordii Hook F (TWHF), which is used to treat rheumatoid arthritis (RA). TP has a narrow therapeutic window. To increase the therapeutic index of TP, a novel TP-loaded transdermal delivery system, named TP-loaded hydrogel-thickened microemulsion (TP-MTH), has been developed to treat RA. Our previous studies have demonstrated the good efficacy of TP-MTH in animals. This paper evaluated the safety of TP-MTH with several animals. Results demonstrated no obvious toxicities in a series of toxicity tests: acute toxicity study of TP-MTH (1.2mg/kg) in rabbits, 6-month long-term toxicity study of TP-MTH (0.06, 0.18, 0.54mg/kg) in rabbits, safety pharmacology study of TP-MTH (0.03, 0.09, 0.27mg/kg, for 5 d) in mice and beagle dogs, skin irritation study in rabbits, and skin allergic reaction test in guinea pigs. Only mild reversible skin irritation signs were observed on the skin of animals. These studies suggest that topical TP-MTH is a promising drug formulation for the treatment of RA.