Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 11: 570131, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224111

RESUMO

Ebola virus (EBOV) has caused several outbreaks as the consequence of spillover events from zoonotic sources and has resulted in huge death tolls. In spite of considerable progress, a thorough know-how regarding EBOV adaptation in various host species and detailed information about the potential reservoirs of EBOV still remains obscure. The present study was executed to examine the patterns of codon usage and its associated influence in the adaptation of EBOV to potential hosts that dwell in Africa, the origin of the viral outbreaks. Correspondence analysis (CA) revealed that the codon usage signature in EBOV is a complex interplay of factors including compositional bias and natural selection, with the latter having a more pronounced impact. Low codon usage bias in EBOV indicates a flexibility of the viruses in adapting to diverse range of hosts with different codon usage architectures. EBOV adaptation in potential hosts, as estimated by codon adaptation index (CAI) and relative codon deoptimization index (RCDI), revealed that the viruses were relatively better adapted to African primates than other mammals examined, which might account for the high fatality rate of primates owing to EBOV infection. Bats have been speculated as natural reservoirs of EBOV. In the present analysis it was interesting to note that EBOV displayed lower degrees of adaptation, as estimated by CAI and RCDI, with bats in comparison to the primate hosts. Lower degrees of adaptation might contribute to long-term co-existence and circulation of the viral pathogens in bat populations. Codon usage patterns of EBOV isolates associated with different outbreaks varied significantly, with discrete patterns between the West and Central African isolates. Additional evolutionary analyses indicated that the West African Epidemic began with an initial spillover infection and there was more than one population of EBOV circulating in the natural reservoir in the Democratic Republic of the Congo. The present study yields valuable information regarding the possible circulation of EBOV in various African mammals.

2.
Front Microbiol ; 11: 1615, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760376

RESUMO

The H1N1/pdm2009 virus is a new triple-reassortant virus. While Eurasian avian-like and triple-reassortant swine influenza viruses are the direct ancestors of H1N1/pdm2009, the classic swine influenza virus facilitate the spectrum of influenza A diversity in pig population when the reassortant events occurred during 1998 to April 2009. The factors that facilitate the final formation of this gene constellation for H1N1/pdm2009 virus from this complex gene pool remain unknown. Since a novel successful virus should efficiently replicate and transmit in their hosts, in this study, we estimated the adaptability of the codon usage patterns of the pool of genes from these lineages of swine influenza viruses to the human expression system. We found that the MP and NA genes of Eurasian avian-like swine influenza viruses, and the PB2, PB1 and PA genes of triple-reassortant swine influenza viruses were best adapted to the human codon usage pattern. As these genes participated in the development of H1N1/pdm2009, they might help in viral replication and strengthen its competitiveness during its emergence. After its emergence in the human population, a gradual optimization of codon usage patterns between 2009 and 2019 to the human codon usage for the H1N1/pdm2009 genes was detected. This reveals that ongoing adaptive evolution, after its original incursion, occurred to further increase the adaptability of overall gene cassette to human expression system.

3.
Infect Genet Evol ; 81: 104181, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31918040

RESUMO

Avian influenza A viruses (AIVs) classify into 18 hemagglutinin (HA) and 11 neuraminidase (NA) subtypes. Even though H1N1 and H3N2 subtypes usually circulate among humans leading to infection, occasionally, H5, H6, H7, H9, and H10 that circulate in poultry also infect humans, and especially H5N1 and H7N9. Efficient virus replication is a critical factor that influences infection. Codon usage of a virus must coevolve with its host for efficient viral replication, therefore, we conduct a comprehensive analysis of codon usage bias in human-isolated AIVs to test their adaptation to host expression system. The relative synonymous codon usage (RSCU) pattern, and the codon adaptation index (CAI) are calculated for this purpose. We find that all human-isolated AIVs tend to eliminate GC and CpG compositions, which may prevent activation of the host innate immune system. Although codon usage differs between AIV subtypes, our data support the conclusion that natural selection has played a major role and mutation pressure a minor role in shaping codon usage bias in all AIVs. Our efforts discover that codon usage of genes encoding surface proteins of H5N1, and the polymerase genes of H7N9 has better fit to the human expression system. This may associate with their better replication and infection in human.


Assuntos
Aves/virologia , Uso do Códon/genética , Códon/genética , Vírus da Influenza A/genética , Influenza Aviária/genética , Influenza Humana/genética , Animais , Hemaglutininas/genética , Humanos , Influenza Aviária/virologia , Influenza Humana/virologia , Neuraminidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA