Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(15): e202318534, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38343199

RESUMO

Click chemistry is a powerful molecular assembly strategy for rapid functional discovery. The development of click reactions with new connecting linkage is of great importance for expanding the click chemistry toolbox. We report the first selenium-nitrogen exchange (SeNEx) click reaction between benzoselenazolones and terminal alkynes (Se-N to Se-C), which is inspired by the biochemical SeNEx between Ebselen and cysteine (Cys) residue (Se-N to Se-S). The formed selenoalkyne connection is readily elaborated, thus endowing this chemistry with multidimensional molecular diversity. Besides, this reaction is modular, predictable, and high-yielding, features fast kinetics (k2≥14.43 M-1 s-1), excellent functional group compatibility, and works well at miniaturization (nanomole-scale), opening up many interesting opportunities for organo-Se synthesis and bioconjugation, as exemplified by sequential click chemistry (coupled with ruthenium-catalyzed azide-alkyne cycloaddition (RuAAC) and sulfur-fluoride exchange (SuFEx)), selenomacrocycle synthesis, nanomole-scale synthesis of Se-containing natural product library and DNA-encoded library (DEL), late-stage peptide modification and ligation, and multiple functionalization of proteins. These results indicated that SeNEx is a useful strategy for new click chemistry developments, and the established SeNEx chemistry will serve as a transformative platform in multidisciplinary fields such as synthetic chemistry, material science, chemical biology, medical chemistry, and drug discovery.


Assuntos
Química Click , Selênio , Química Click/métodos , Química Farmacêutica/métodos , Proteínas/química , Alcinos/química , Azidas/química , Reação de Cicloadição
2.
Bioconjug Chem ; 34(8): 1459-1466, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37443440

RESUMO

The DNA-encoded chemical library (DEL) is a powerful hit selection technique in either basic science or innovative drug discovery. With the aim to circumvent the issue concerning DNA barcode damage in a conventional on-DNA copper-catalyzed azide-alkyne cycloaddition reaction (CuAAC), we have successfully developed the first DNA-compatible enolate-azide [3 + 2] cycloaddition reaction. The merits of this DEL chemistry include metal-free reaction and high DNA fidelity, high conversions and easy operation, broad substrate scope, and ready access to the highly substituted 1,4,5-trisubstituted triazoles. Thus, it will not only further enrich the DEL chemistry toolbox but also will have great potential in practical DEL synthesis.


Assuntos
Azidas , Cobre , Reação de Cicloadição , Catálise , Alcinos , DNA
3.
Adv Sci (Weinh) ; 9(26): e2202790, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35853237

RESUMO

A successful DNA-encoded library (DEL) will consist of diverse skeletons and cover chemical space as comprehensive as possible to fully realize its potential in drug discovery and chemical biology. However, the lack of versatile on-DNA arylation methods for phenols that are less nucleophilic and reactive poses a great hurdle for DEL to include diaryl ether, a privileged chemotype in pharmaceuticals and natural products. This work describes the use of "substrate activation" approach to address the arylation of DNA-conjugated phenols. Diaryliodonium salt, a highly electrophilic and reactive arylation reagent, is employed as Ar+ sources to ensure highly selective on-DNA arylation of phenols and oximes with both high yields and DNA fidelity. Notably, the new on-DNA arylation reaction can be applied to the late-stage modification of peptides containing tyrosine side-chain and to synthesize DNA-tagged analogues of existing drug molecules such as sorafenib, a known pan-kinase inhibitor. The new on-DNA diaryliodonium salts chemistry affords a greater flexibility in DEL design and synthesis.


Assuntos
Metais , Sais , Éteres , Oximas/química , Fenóis/química , Sais/química
4.
ChemMedChem ; 17(17): e202200324, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35894234

RESUMO

Selenium (Se) is an emerging versatile player in medicinal chemistry. The incorporation of Se into small molecules and natural products could have multiple benefits. However, the lack of efficient methods for the synthesis of Se-containing chemical library has greatly hindered the development of seleno-medicinal chemistry. With the aim to address this issue, we proposed the development of "clickable selenylation" reactions, which can be used in the synthesis of Se-containing in situ library and DNA-encoded library (SeDEL), thereby quickly producing ultra-large collections of Se-containing compounds and boosting the development of seleno-medicinal chemistry. This research paradigm can be concluded as "clickable selenylation chemistry development→in situ library construction/SeDEL synthesis→phenotype- or target-based screening→seleno-hit compound".


Assuntos
Química Farmacêutica , Bibliotecas de Moléculas Pequenas , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA