Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain ; 145(12): 4349-4367, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36074904

RESUMO

Parkinson's disease is a common incurable neurodegenerative disease. The identification of genetic variants via genome-wide association studies has considerably advanced our understanding of the Parkinson's disease genetic risk. Understanding the functional significance of the risk loci is now a critical step towards translating these genetic advances into an enhanced biological understanding of the disease. Impaired mitophagy is a key causative pathway in familial Parkinson's disease, but its relevance to idiopathic Parkinson's disease is unclear. We used a mitophagy screening assay to evaluate the functional significance of risk genes identified through genome-wide association studies. We identified two new regulators of PINK1-dependent mitophagy initiation, KAT8 and KANSL1, previously shown to modulate lysine acetylation. These findings suggest PINK1-mitophagy is a contributing factor to idiopathic Parkinson's disease. KANSL1 is located on chromosome 17q21 where the risk associated gene has long been considered to be MAPT. While our data do not exclude a possible association between the MAPT gene and Parkinson's disease, they provide strong evidence that KANSL1 plays a crucial role in the disease. Finally, these results enrich our understanding of physiological events regulating mitophagy and establish a novel pathway for drug targeting in neurodegeneration.


Assuntos
Mitofagia , Doença de Parkinson , Humanos , Estudo de Associação Genômica Ampla , Mitofagia/fisiologia , Doenças Neurodegenerativas , Doença de Parkinson/metabolismo , Proteínas Quinases/genética , Proteínas tau/genética
2.
Front Pharmacol ; 11: 1240, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973499

RESUMO

The "gepants" are a class of calcitonin gene-related peptide (CGRP) receptor antagonist molecules that have been developed for the prevention and treatment of migraine. Rimegepant is reported to act at the CGRP receptor, has good oral bioavailability, and has had positive clinical trial results. However, there is very little data available describing its receptor pharmacology. Importantly, rimegepant activity at the AMY1 receptor, a second potent CGRP receptor that is known to be expressed in the trigeminovascular system, has not been reported. The ability of rimegepant to antagonize activation of human CGRP, AMY1, and related adrenomedullin receptors was determined in transfected in Cos7 cells. Rimegepant was an effective antagonist at both the CGRP and AMY1 receptor. The antagonism of both CGRP and AMY1 receptors may have implications for our understanding of the mechanism of action of rimegepant in the treatment of migraine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA