Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2792: 265-275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38861094

RESUMO

Eukaryotic cells are compartmentalized by membrane-bounded organelles to ensure that specific biochemical reactions and cellular functions occur in a spatially restricted manner. The subcellular localization of proteins is largely determined by their intrinsic targeting signals, which are mainly constituted by short peptides. A complete organelle targeting signal may contain a core signal (CoreS) as well as auxiliary signals (AuxiS). However, the AuxiS is often not as well characterized as the CoreS. Peroxisomes house many key steps in photorespiration, besides other crucial functions in plants. Peroxisome targeting signal type 1 (PTS1), which is carried by most peroxisome matrix proteins, was initially recognized as a C-terminal tripeptide with a "canonical" consensus of [S/A]-[K/R]-[L/M]. Many studies have shown the existence of auxiliary targeting signals upstream of PTS1, but systematic characterizations are lacking. Here, we designed an analytical strategy to characterize the auxiliary targeting signals for plant peroxisomes using large datasets and statistics followed by experimental validations. This method may also be applied to deciphering the auxiliary targeting signals for other organelles, whose organellar targeting depends on a core peptide with assistance from a nearby auxiliary signal.


Assuntos
Biologia Computacional , Peroxissomos , Peroxissomos/metabolismo , Biologia Computacional/métodos , Transporte Proteico , Sinais de Orientação para Peroxissomos , Sinais Direcionadores de Proteínas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Bases de Dados de Proteínas , Sequência de Aminoácidos
2.
Nat Aging ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834883

RESUMO

Oxidative phosphorylation, essential for energy metabolism and linked to the regulation of longevity, involves mitochondrial and nuclear genes. The functions of these genes and their evolutionary rate covariation (ERC) have been extensively studied, but little is known about whether other nuclear genes not targeted to mitochondria evolutionarily and functionally interact with mitochondrial genes. Here we systematically examined the ERC of mitochondrial and nuclear benchmarking universal single-copy ortholog (BUSCO) genes from 472 insects, identifying 75 non-mitochondria-targeted nuclear genes. We found that the uncharacterized gene CG11837-a putative ortholog of human DIMT1-regulates insect lifespan, as its knockdown reduces median lifespan in five diverse insect species and Caenorhabditis elegans, whereas its overexpression extends median lifespans in fruit flies and C. elegans and enhances oxidative phosphorylation gene activity. Additionally, DIMT1 overexpression protects human cells from cellular senescence. Together, these data provide insights into the ERC of mito-nuclear genes and suggest that CG11837 may regulate longevity across animals.

3.
Dev Cell ; 59(11): 1363-1378.e4, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38579719

RESUMO

The mechanism underlying the ability of rice to germinate underwater is a largely enigmatic but key research question highly relevant to rice cultivation. Moreover, although rice is known to accumulate salicylic acid (SA), SA biosynthesis is poorly defined, and its role in underwater germination is unknown. It is also unclear whether peroxisomes, organelles essential to oilseed germination and rice SA accumulation, play a role in rice germination. Here, we show that submerged imbibition of rice seeds induces SA accumulation to promote germination in submergence. Two submergence-induced peroxisomal Oryza sativa cinnamate:CoA ligases (OsCNLs) are required for this SA accumulation. SA exerts this germination-promoting function by inducing indole-acetic acid (IAA) catabolism through the IAA-amino acid conjugating enzyme GH3. The metabolic cascade we identified may potentially be adopted in agriculture to improve the underwater germination of submergence-intolerant rice varieties. SA pretreatment is also a promising strategy to improve submerged rice germination in the field.


Assuntos
Germinação , Oryza , Peroxissomos , Reguladores de Crescimento de Plantas , Proteínas de Plantas , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Germinação/fisiologia , Peroxissomos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Coenzima A Ligases/metabolismo , Ácidos Indolacéticos/metabolismo , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Ácido Salicílico/metabolismo , Cinamatos/metabolismo
4.
Anal Chim Acta ; 1296: 342290, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401924

RESUMO

Genetically modified crops (GMOs) have led to significant, if not revolutionary, agricultural advances. The development of GMOs requires necessary regulations, which depend on the detection of GMOs. A sensitive and specific biosensor for the detection of transgenic crops is crucial to improve the detection efficiency of GMOs. Here, we developed a CRISPR/Cas12a-mediated entropy-driven electrochemiluminescence (ECL) biosensor for the sensitive and specific detection of MON810, the world's most widely used transgenic insect-resistant maize. We designed two crRNAs to activate CRISPR/Cas12a, allowing it to cut non-specific single strands, and we modified the DNA tetrahedron (DT) on the surface of the gold electrode to diminish non-specific adsorption. The entropy-driven chain displacement reaction with the target DNA takes place for amplification. After optimization, the biosensor has satisfactory accuracy and selectivity, with a linear range of ECL of 1-106 fM and a limit of detection (LOD) of 3.3 fM by the 3σ method. The biosensor does not require polymerase chain reaction (PCR) amplification or complex sample processing, which dramatically improves transgenic crop detection efficiency. This new biosensor achieves rapid, sensitive, and highly specific detection of transgenic crops, and has great potential for large-scale field detection of transgenic crops.


Assuntos
Técnicas Biossensoriais , Zea mays , Zea mays/genética , Sistemas CRISPR-Cas , Produtos Agrícolas , Entropia , Plantas Geneticamente Modificadas/genética , DNA
5.
Trends Biotechnol ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38423802

RESUMO

Subcellular compartmentalization of metabolic pathways plays a crucial role in metabolic engineering. The peroxisome has emerged as a highly valuable and promising compartment for organelle engineering, particularly in the fields of biological manufacturing and agriculture. In this review, we summarize the remarkable achievements in peroxisome engineering in yeast, the industrially popular biomanufacturing chassis host, to produce various biocompounds. We also review progress in plant peroxisome engineering, a field that has already exhibited high potential in both biomanufacturing and agriculture. Moreover, we outline various experimentally validated strategies to improve the efficiency of engineered pathways in peroxisomes, as well as prospects of peroxisome engineering.

6.
Mol Plant ; 17(2): 240-257, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38053337

RESUMO

Rice production accounts for approximately half of the freshwater resources utilized in agriculture, resulting in greenhouse gas emissions such as methane (CH4) from flooded paddy fields. To address this challenge, environmentally friendly and cost-effective water-saving techniques have become widely adopted in rice cultivation. However, the implementation of water-saving treatments (WSTs) in paddy-field rice has been associated with a substantial yield loss of up to 50% as well as a reduction in nitrogen use efficiency (NUE). In this study, we discovered that the target of rapamycin (TOR) signaling pathway is compromised in rice under WST. Polysome profiling-coupled transcriptome sequencing (polysome-seq) analysis unveiled a substantial reduction in global translation in response to WST associated with the downregulation of TOR activity. Molecular, biochemical, and genetic analyses revealed new insights into the impact of the positive TOR-S6K-RPS6 and negative TOR-MAF1 modules on translation repression under WST. Intriguingly, ammonium exhibited a greater ability to alleviate growth constraints under WST by enhancing TOR signaling, which simultaneously promoted uptake and utilization of ammonium and nitrogen allocation. We further demonstrated that TOR modulates the ammonium transporter AMT1;1 as well as the amino acid permease APP1 and dipeptide transporter NPF7.3 at the translational level through the 5' untranslated region. Collectively, these findings reveal that enhancing TOR signaling could mitigate rice yield penalty due to WST by regulating the processes involved in protein synthesis and NUE. Our study will contribute to the breeding of new rice varieties with increased water and fertilizer utilization efficiency.


Assuntos
Compostos de Amônio , Oryza , Oryza/genética , Melhoramento Vegetal , Agricultura/métodos , Nitrogênio/metabolismo , Água/metabolismo , Transdução de Sinais , Compostos de Amônio/metabolismo , Solo/química , Fertilizantes/análise
8.
Nat Commun ; 14(1): 7318, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951952

RESUMO

Soil harbors a vast expanse of unidentified microbes, termed as microbial dark matter, presenting an untapped reservo)ir of microbial biodiversity and genetic resources, but has yet to be fully explored. In this study, we conduct a large-scale excavation of soil microbial dark matter by reconstructing 40,039 metagenome-assembled genome bins (the SMAG catalogue) from 3304 soil metagenomes. We identify 16,530 of 21,077 species-level genome bins (SGBs) as unknown SGBs (uSGBs), which expand archaeal and bacterial diversity across the tree of life. We also illustrate the pivotal role of uSGBs in augmenting soil microbiome's functional landscape and intra-species genome diversity, providing large proportions of the 43,169 biosynthetic gene clusters and 8545 CRISPR-Cas genes. Additionally, we determine that uSGBs contributed 84.6% of previously unexplored viral-host associations from the SMAG catalogue. The SMAG catalogue provides an useful genomic resource for further studies investigating soil microbial biodiversity and genetic resources.


Assuntos
Microbiota , Solo , Microbiota/genética , Metagenoma/genética , Biodiversidade , Genômica , Microbiologia do Solo
10.
Cell Rep ; 42(7): 112702, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37384532

RESUMO

Transcriptional regulation of secondary cell wall (SCW) formation is strictly controlled by a complex network of transcription factors in vascular plants and has been shown to be mediated by a group of NAC master switches. In this study, we show that in a bHLH transcription factor, OsbHLH002/OsICE1, its loss-of-function mutant displays a lodging phenotype. Further results show that OsbHLH002 and Oryza sativa homeobox1 (OSH1) interact and share a set of common targets. In addition, the DELLA protein SLENDER RICE1, rice ortholog of KNOTTED ARABIDOPSIS THALIANA7, and OsNAC31 interact with OsbHLH002 and OSH1 and regulate their binding capacity on OsMYB61, a key regulatory factor in SCW development. Collectively, our results indicate OsbHLH002 and OSH1 as key regulators in SCW formation and shed light on molecular mechanisms of how active and repressive factors precisely orchestrate SCW synthesis in rice, which may provide a strategy for manipulating plant biomass production.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oryza , Oryza/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
11.
PeerJ Comput Sci ; 9: e1264, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346517

RESUMO

Visual inspection of the appearance defects on industrial products has always been a research hotspot pursued by industry and academia. Due to the lack of samples in the industrial defect dataset and the serious class imbalance, deep learning technology cannot be directly applied to industrial defect visual inspection to meet the real application needs. Transfer learning is a good choice to deal with insufficient samples. However, cross-dataset bias is unavoidable during simple knowledge transfer. We noticed that the appearance defects of industrial products are similar, and most defects can be classified as stains or texture jumps, which provides a research basis for building a universal and adaptive industrial defect detection model. In this article, based on the idea of model-agnostic meta-learning (MAML), we propose an adaptive industrial defect detection model through learning from multiple known industrial defect datasets and then transfer it to the novel anomaly detection tasks. In addition, the Siamese network is used to extract differential features to minimize the influence of defect types on model generalization, and can also highlight defect features and improve model detection performance. At the same time, we add a coordinate attention mechanism to the model, which realizes the feature enhancement of the region of interest in terms of two coordinate dimensions. In the simulation experiments, we construct and publish a visual defect dataset of injection molded bottle cups, termed BC defects, which can complement existing industrial defect visual data benchmarks. Simulation results based on BC defects dataset and other public datasets have demonstrated the effectiveness of the proposed general visual detection model for industrial defects. The dataset and code are available at https://github.com/zhg-SZPT/MeDetection.

12.
Front Plant Sci ; 14: 1180647, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37360717

RESUMO

Peroxisomes are ubiquitous eukaryotic organelles housing not only many important oxidative metabolic reactions, but also some reductive reactions that are less known. Members of the short-chain dehydrogenase/reductase (SDR) superfamily, which are NAD(P)(H)-dependent oxidoreductases, play important roles in plant peroxisomes, including the conversion of indole-3-butyric acid (IBA) to indole-3-acetic acid (IAA), auxiliary ß-oxidation of fatty acids, and benzaldehyde production. To further explore the function of this family of proteins in the plant peroxisome, we performed an in silico search for peroxisomal SDR proteins from Arabidopsis based on the presence of peroxisome targeting signal peptides. A total of 11 proteins were discovered, among which four were experimentally confirmed to be peroxisomal in this study. Phylogenetic analyses showed the presence of peroxisomal SDR proteins in diverse plant species, indicating the functional conservation of this protein family in peroxisomal metabolism. Knowledge about the known peroxisomal SDRs from other species also allowed us to predict the function of plant SDR proteins within the same subgroup. Furthermore, in silico gene expression profiling revealed strong expression of most SDR genes in floral tissues and during seed germination, suggesting their involvement in reproduction and seed development. Finally, we explored the function of SDRj, a member of a novel subgroup of peroxisomal SDR proteins, by generating and analyzing CRISPR/Cas mutant lines. This work provides a foundation for future research on the biological activities of peroxisomal SDRs to fully understand the redox control of peroxisome functions.

13.
Plant Biotechnol J ; 21(8): 1671-1681, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37155328

RESUMO

The fungal bioluminescence pathway (FBP) was identified from glowing fungi, which releases self-sustained visible green luminescence. However, weak bioluminescence limits the potential application of the bioluminescence system. Here, we screened and characterized a C3'H1 (4-coumaroyl shikimate/quinate 3'-hydroxylase) gene from Brassica napus, which efficiently converts p-coumaroyl shikimate to caffeic acid and hispidin. Simultaneous expression of BnC3'H1 and NPGA (null-pigment mutant in A. nidulans) produces more caffeic acid and hispidin as the natural precursor of luciferin and significantly intensifies the original fungal bioluminescence pathway (oFBP). Thus, we successfully created enhanced FBP (eFBP) plants emitting 3 × 1011 photons/min/cm2 , sufficient to illuminate its surroundings and visualize words clearly in the dark. The glowing plants provide sustainable and bio-renewable illumination for the naked eyes, and manifest distinct responses to diverse environmental conditions via caffeic acid biosynthesis pathway. Importantly, we revealed that the biosynthesis of caffeic acid and hispidin in eFBP plants derived from the sugar pathway, and the inhibitors of the energy production system significantly reduced the luminescence signal rapidly from eFBP plants, suggesting that the FBP system coupled with the luciferin metabolic flux functions in an energy-driven way. These findings lay the groundwork for genetically creating stronger eFBP plants and developing more powerful biological tools with the FBP system.


Assuntos
Engenharia Metabólica , Plantas , Luciferinas
14.
J Integr Plant Biol ; 65(2): 371-380, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35975710

RESUMO

Protein ubiquitination regulates diverse cellular processes in eukaryotic organisms, from growth and development to stress response. Proteins subjected to ubiquitination can be found in virtually all subcellular locations and organelles, including peroxisomes, single-membrane and highly dynamic organelles ubiquitous in eukaryotes. Peroxisomes contain metabolic functions essential to plants and animals such as lipid catabolism, detoxification of reactive oxygen species (ROS), biosynthesis of vital hormones and cofactors, and photorespiration. Plant peroxisomes possess a complex proteome with functions varying among different tissue types and developmental stages, and during plant response to distinct environmental cues. However, how these diverse functions are regulated at the post-translational level is poorly understood, especially in plants. In this review, we summarized current knowledge of the involvement of protein ubiquitination in peroxisome protein import, remodeling, pexophagy, and metabolism, focusing on plants, and referencing discoveries from other eukaryotic systems when relevant. Based on previous ubiquitinomics studies, we compiled a list of 56 ubiquitinated Arabidopsis peroxisomal proteins whose functions are associated with all the major plant peroxisomal metabolic pathways. This discovery suggests a broad impact of protein ubiquitination on plant peroxisome functions, therefore substantiating the need to investigate this significant regulatory mechanism in peroxisomes at more depths.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Peroxissomos/metabolismo , Ubiquitinação , Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo
15.
Cell ; 185(16): 2975-2987.e10, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35853453

RESUMO

Horizontal gene transfer (HGT) is an important evolutionary force shaping prokaryotic and eukaryotic genomes. HGT-acquired genes have been sporadically reported in insects, a lineage containing >50% of animals. We systematically examined HGT in 218 high-quality genomes of diverse insects and found that they acquired 1,410 genes exhibiting diverse functions, including many not previously reported, via 741 distinct transfers from non-metazoan donors. Lepidopterans had the highest average number of HGT-acquired genes. HGT-acquired genes containing introns exhibited substantially higher expression levels than genes lacking introns, suggesting that intron gains were likely involved in HGT adaptation. Lastly, we used the CRISPR-Cas9 system to edit the prevalent unreported gene LOC105383139, which was transferred into the last common ancestor of moths and butterflies. In diamondback moths, males lacking LOC105383139 courted females significantly less. We conclude that HGT has been a major contributor to insect adaptation.


Assuntos
Borboletas , Transferência Genética Horizontal , Animais , Borboletas/genética , Corte , Evolução Molecular , Masculino , Filogenia
16.
Plant J ; 111(2): 567-582, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35603488

RESUMO

Peroxisomes are universal eukaryotic organelles essential to plants and animals. Most peroxisomal matrix proteins carry peroxisome targeting signal type 1 (PTS1), a C-terminal tripeptide. Studies from various kingdoms have revealed influences from sequence upstream of the tripeptide on peroxisome targeting, supporting the view that positive charges in the upstream region are the major enhancing elements. However, a systematic approach to better define the upstream elements influencing PTS1 targeting capability is needed. Here, we used protein sequences from 177 plant genomes to perform large-scale and in-depth analysis of the PTS1 domain, which includes the PTS1 tripeptide and upstream sequence elements. We identified and verified 12 low-frequency PTS1 tripeptides and revealed upstream enhancing and inhibiting sequence patterns for peroxisome targeting, which were subsequently validated in vivo. Follow-up analysis revealed that nonpolar and acidic residues have relatively strong enhancing and inhibiting effects, respectively, on peroxisome targeting. However, in contrast to the previous understanding, positive charges alone do not show the anticipated enhancing effect and that both the position and property of the residues within these patterns are important for peroxisome targeting. We further demonstrated that the three residues immediately upstream of the tripeptide are the core influencers, with a 'basic-nonpolar-basic' pattern serving as a strong and universal enhancing pattern for peroxisome targeting. These findings have significantly advanced our knowledge of the PTS1 domain in plants and likely other eukaryotic species as well. The principles and strategies employed in the present study may also be applied to deciphering auxiliary targeting signals for other organelles.


Assuntos
Sinais de Orientação para Peroxissomos , Sinais Direcionadores de Proteínas , Sequência de Aminoácidos , Animais , Peroxissomos/metabolismo , Plantas
17.
BMC Biol ; 20(1): 49, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35172831

RESUMO

BACKGROUND: The morning glories (Convolvulaceae) are distributed worldwide and produce economically important crops, medicinal herbs, and ornamentals. Members of this family are diverse in morphological characteristics and trophic modes, including the leafless parasitic Cuscuta (dodders). Organelle genomes were generally used for studying plant phylogeny and genomic variations. Notably, plastomes in parasitic plants always show non-canonical features, such as reduced size and accelerated rates. However, few organelle genomes of this group have been sequenced, hindering our understanding of their evolution, and dodder mitogenome in particular. RESULTS: We assembled 22 new mitogenomes and 12 new plastomes in Convolvulaceae. Alongside previously known ones, we totally analyzed organelle genomes of 23 species in the family. Our sampling includes 16 leafy autotrophic species and 7 leafless parasitic dodders, covering 8 of the 12 tribes. Both the plastid and mitochondrial genomes of these plants have encountered variations that were rarely observed in other angiosperms. All of the plastomes possessed atypical IR boundaries. Besides the gene and IR losses in dodders, some leafy species also showed gene and intron losses, duplications, structural variations, and insertions of foreign DNAs. The phylogeny reconstructed by plastid protein coding sequences confirmed the previous relationship of the tribes. However, the monophyly of 'Merremieae' and the sister group of Cuscuta remained uncertain. The mitogenome was significantly inflated in Cuscuta japonica, which has exceeded over 800 kb and integrated massive DNAs from other species. In other dodders, mitogenomes were maintained in small size, revealing divergent evolutionary strategies. Mutations unique to plants were detected in the mitochondrial gene ccmFc, which has broken into three fragments through gene fission and splicing shift. The unusual changes likely initially happened to the common ancestor of the family and were caused by a foreign insertion from rosids followed by double-strand breaks and imprecise DNA repairs. The coding regions of ccmFc expanded at both sides after the fission, which may have altered the protein structure. CONCLUSIONS: Our family-scale analyses uncovered unusual scenarios for both organelle genomes in Convolvulaceae, especially in parasitic plants. The data provided valuable genetic resources for studying the evolution of Convolvulaceae and plant parasitism.


Assuntos
Cuscuta , Genoma Mitocondrial , Cuscuta/genética , Evolução Molecular , Filogenia , Plantas/genética , Plastídeos/genética
18.
Biodes Res ; 2022: 0002, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37905202

RESUMO

Vinblastine has been used clinically as one of the most potent therapeutics for the treatment of several types of cancer. However, the traditional plant extraction method suffers from unreliable supply, low abundance, and extremely high cost. Here, we use synthetic biology approach to engineer Saccharomyces cerevisiae for de novo biosynthesis of vindoline and catharanthine, which can be coupled chemically or biologically to vinblastine. On the basis of a platform strain with sufficient supply of precursors and cofactors for biosynthesis, we reconstituted, debottlenecked, and optimized the biosynthetic pathways for the production of vindoline and catharanthine. The vindoline biosynthetic pathway represents one of the most complicated pathways ever reconstituted in microbial cell factories. Using shake flask fermentation, our engineered yeast strains were able to produce catharanthine and vindoline at a titer of 527.1 and 305.1 µg·liter-1, respectively, without accumulating detectable amount of pathway intermediates. This study establishes a representative example for the production of valuable plant natural products in yeast.

19.
Front Plant Sci ; 12: 762195, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733309

RESUMO

Fagales are an order of woody plants and comprise more than 1,100 species, most of which produce economically important timbers, nuts, and fruits. Their nuclear and plastid genomes are well-sequenced and provided valuable resources to study their phylogeny, breeding, resistance, etc. However, little is known about the mitochondrial genomes (mitogenomes), which hinder a full understanding of their genome evolution. In this study, we assembled complete mitogenomes of 23 species, covering five of the seven families of Fagales. These mitogenomes had similar gene sets but varied 2.4 times in size. The mitochondrial genes were highly conserved, and their capacity in phylogeny was challenging. The mitogenomic structure was extremely dynamic, and synteny among species was poor. Further analyses of the Fagales mitogenomes revealed extremely mosaic characteristics, with horizontal transfer (HGT)-like sequences from almost all seed plant taxa and even mitoviruses. The largest mitogenome, Carpinus cordata, did not have large amounts of specific sequences but instead contained a high proportion of sequences homologous to other Fagales. Independent and unequal transfers of third-party DNA, including nuclear genome and other resources, may partially account for the HGT-like fragments and unbalanced size expansions observed in Fagales mitogenomes. Supporting this, a mitochondrial plasmid-like of nuclear origin was found in Carpinus. Overall, we deciphered the last genetic materials of Fagales, and our large-scale analyses provide new insights into plant mitogenome evolution and size variation.

20.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575968

RESUMO

Purple-colored leaves in plants attain much interest for their important biological functions and could be a potential source of phenotypic marker in selecting individuals in breeding. The transcriptional profiling helps to precisely identify mechanisms of leaf pigmentation in crop plants. In this study, two genetically unlike rice genotypes, the mutant purple leaf (pl) and wild (WT) were selected for RNA-sequencing and identifying the differentially expressed genes (DEGs) that are regulating purple leaf color. In total, 609 DEGs were identified, of which 513 and 96 genes were up- and down-regulated, respectively. The identified DEGs are categorized into metabolic process, carboxylic acid biosynthesis, phenylpropanoids, and phenylpropanoid biosynthesis process enrichment by GO analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) confirmed their association with phenylpropanoid synthesis, flavonoid synthesis, and phenylalanine metabolism. To explore molecular mechanism of purple leaf color, a set of anthocyanin biosynthetic and regulatory gene expression patterns were checked by qPCR. We found that OsPAL (Os02g0626100, Os02g0626400, Os04g0518400, Os05g0427400 and Os02g0627100), OsF3H (Os03g0122300), OsC4HL (Os05g0320700), and Os4CL5 (Os08g0448000) are associated with anthocyanin biosynthesis, and they were up-regulated in pl leaves. Two members of regulatory MYB genes (OsMYB55; Os05g0553400 and Os08g0428200), two bHLH genes (Os01g0196300 and Os04g0300600), and two WD40 genes (Os11g0132700 and Os11g0610700) also showed up-regulation in pl mutant. These genes might have significant and vital roles in pl leaf coloration and could provide reference materials for further experimentation to confirm the molecular mechanisms of anthocyanin biosynthesis in rice.


Assuntos
Antocianinas/biossíntese , Oryza/genética , Folhas de Planta/genética , Transcriptoma/genética , Antocianinas/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas Mutantes/genética , Oryza/crescimento & desenvolvimento , Pigmentação/genética , Melhoramento Vegetal , Folhas de Planta/crescimento & desenvolvimento , RNA-Seq
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA