Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(21): 11783-11796, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37850639

RESUMO

CRISPR-Cas systems are widespread in prokaryotes and provide adaptive immune against viral infection. Viruses encode a type of proteins called anti-CRISPR to evade the immunity. Here, we identify an archaeal virus-encoded anti-CRISPR protein, AcrIIIB2, that inhibits Type III-B immunity. We find that AcrIIIB2 inhibits Type III-B CRISPR-Cas immunity in vivo regardless of viral early or middle-/late-expressed genes to be targeted. We also demonstrate that AcrIIIB2 interacts with Cmr4α subunit, forming a complex with target RNA and Cmr-α ribonucleoprotein complex (RNP). Furtherly, we discover that AcrIIIB2 inhibits the RNase activity, ssDNase activity and cOA synthesis activity of Cmr-α RNP in vitro under a higher target RNA-to-Cmr-α RNP ratio and has no effect on Cmr-α activities at the target RNA-to-Cmr-α RNP ratio of 1. Our results suggest that once the target RNA is cleaved by Cmr-α RNP, AcrIIIB2 probably inhibits the disassociation of cleaved target RNA, therefore blocking the access of other target RNA substrates. Together, our findings highlight the multiple functions of a novel anti-CRISPR protein on inhibition of the most complicated CRISPR-Cas system targeting the genes involved in the whole life cycle of viruses.


Assuntos
Vírus de Archaea , Sistemas CRISPR-Cas , Vírus de Archaea/fisiologia , Proteínas Associadas a CRISPR/metabolismo , RNA , Proteínas Virais/metabolismo
2.
RNA Biol ; 16(9): 1166-1178, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31096876

RESUMO

CRISPR-Cas systems provide an adaptive defence against foreign nucleic acids guided by small RNAs (crRNAs) in archaea and bacteria. The Type III CRISPR systems are reported to carry RNase, RNA-activated DNase and cyclic oligoadenylate (cOA) synthetase activity, and are significantly different from other CRISPR systems. However, detailed features of target recognition, which are essential for enhancing target specificity remain unknown in Type III CRISPR systems. Here, we show that the Type III-B Cmr-α system in S. islandicus generates two constant lengths of crRNA independent of the length of the spacer. Either mutation at the 3'-end of crRNA or target truncation greatly influences the target capture and cleavage by the Cmr-α effector complex. Furthermore, we found that cleavage at the tag-proximal site on the target RNA by the Cmr-α RNP complex is delayed relative to the other sites, which probably provides Cas10 more time to function as a guard against invaders. Using a mutagenesis assay in vivo, we discovered that a seed motif located at the tag-distal region of the crRNA is required by Cmr1α for target RNA capture by the Cmr-α system thereby enhancing target specificity and efficiency. These findings further refine the model for immune defence of Type III-B CRISPR-Cas system, commencing on capture, cleavage and regulation.


Assuntos
Sistemas CRISPR-Cas/genética , Imunidade/genética , Motivos de Nucleotídeos/genética , RNA/genética , Sulfolobus/genética , Sulfolobus/imunologia , Sequência de Bases , Nucleotídeos/genética , Interferência de RNA
3.
J Bacteriol ; 201(12)2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30936372

RESUMO

Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems incorporate short DNA fragments from invasive genetic elements into host CRISPR arrays in order to generate host immunity. Recently, we demonstrated that the Csa3a regulator protein triggers CCN protospacer-adjacent motif (PAM)-dependent CRISPR spacer acquisition in the subtype I-A CRISPR-Cas system of Sulfolobus islandicus However, the mechanisms underlying specific protospacer selection and spacer insertion remained unclear. Here, we demonstrate that two Cas4 family proteins (Cas4 and Csa1) have essential roles (i) in recognizing the 5' PAM and 3' nucleotide motif of protospacers and (ii) in determining both the spacer length and its orientation. Furthermore, we identify amino acid residues of the Cas4 proteins that facilitate these functions. Overexpression of the Cas4 and Csa1 proteins, and also that of an archaeal virus-encoded Cas4 protein, resulted in strongly reduced adaptation efficiency, and the former proteins yielded a high incidence of PAM-dependent atypical spacer integration or of PAM-independent spacer integration. We further demonstrated that in plasmid challenge experiments, overexpressed Cas4-mediated defective spacer acquisition in turn potentially enabled targeted DNA to escape subtype I-A CRISPR-Cas interference. In summary, these results define the specific involvement of diverse Cas4 proteins in in vivo CRISPR spacer acquisition. Furthermore, we provide support for an anti-CRISPR role for virus-encoded Cas4 proteins that involves compromising CRISPR-Cas interference activity by hindering spacer acquisition.IMPORTANCE The Cas4 family endonuclease is an essential component of the adaptation module in many variants of CRISPR-Cas adaptive immunity systems. The CrenarchaeotaSulfolobus islandicus REY15A carries two cas4 genes (cas4 and csa1) linked to the CRISPR arrays. Here, we demonstrate that Cas4 and Csa1 are essential to CRISPR spacer acquisition in this organism. Both proteins specify the upstream and downstream conserved nucleotide motifs of the protospacers and define the spacer length and orientation in the acquisition process. Conserved amino acid residues, in addition to those recently reported, were identified to be important for these functions. More importantly, overexpression of the Sulfolobus viral Cas4 abolished spacer acquisition, providing support for an anti-CRISPR role for virus-encoded Cas4 proteins that inhibit spacer acquisition.


Assuntos
Proteínas Associadas a CRISPR/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endonucleases/genética , Sulfolobus/enzimologia , Sulfolobus/genética , Vírus de Archaea , DNA Bacteriano/genética , Endonucleases/metabolismo , Proteínas Virais
4.
Curr Issues Mol Biol ; 26: 1-14, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28879852

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) genes provide adaptive immunity against invasion of foreign nucleic acids in archaea and bacteria. The system functions in three distinct stages: adaptation, biogenesis, and interference. CRISPR-Cas systems are currently classified into at least five different types, each with a signature protein among which Type III systems exhibit a dual DNA/RNA interference activity. Structures of a few Type III surveillance complexes have been determined: they are composed of several different subunits and exhibit striking architectural similarities to Type I surveillance complexes. Here, we review the genetic, biochemical, and structural studies concerning CRISPR-Cas Type III systems and discuss their application for genetic manipulations, including genome engineering and gene silencing.


Assuntos
Archaea/genética , Proteínas Arqueais/genética , Bactérias/genética , Proteínas de Bactérias/genética , Sistemas CRISPR-Cas , Edição de Genes/métodos , Archaea/metabolismo , Proteínas Arqueais/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endonucleases/genética , Endonucleases/metabolismo , Inativação Gênica , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
5.
Nucleic Acids Res ; 45(19): 11305-11314, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28977458

RESUMO

CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems provide adaptive immunity against invasive nucleic acids guided by CRISPR RNAs (crRNAs) in archaea and bacteria. Type III CRISPR-Cas effector complexes show RNA cleavage and RNA-activated DNA cleavage activity, representing the only known system of dual nucleic acid interference. Here, we investigated the function of Cmr1 by genetic assays of DNA and RNA interference activity in the mutants and biochemical characterization of their mutated Cmr complexes. Three cmr1α mutants were constructed including ΔßΔ1α, Δß1α-M1 and Δß1α-M2 among which the last two mutants carried a double and a quadruple mutation in the first α-helix region of Cmr1α. Whereas the double mutation of Cmr1α (W58A and F59A) greatly influenced target RNA capture, the quadruple mutation almost abolished crRNA binding to Cmr1α. We found that Cmr2α-6α formed a stable core complex that is active in both RNA and DNA cleavage and that Cmr1α strongly enhances the basal activity of the core complex upon incorporation into the ribonucleoprotein complex. Therefore, Cmr1 functions as an integral activation module in III-B systems, and the unique occurrence of Cmr1 in III-B systems may reflect the adaptive evolution of type III CRISPR-Cas systems in thermophiles.


Assuntos
Proteínas Arqueais/metabolismo , Sistemas CRISPR-Cas , DNA/metabolismo , RNA/metabolismo , Proteínas Arqueais/genética , Sequência de Bases , DNA/genética , Clivagem do DNA , Mutação , Ligação Proteica , RNA/genética , Clivagem do RNA , Interferência de RNA , Sulfolobus/genética , Sulfolobus/metabolismo
6.
Nucleic Acids Res ; 45(18): 10740-10750, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28977519

RESUMO

CRISPR-Cas systems protect prokaryotes against invading viruses and plasmids. The system is associated with a large number of Cas accessory proteins among which many contain a CARF (CRISPR-associated Rossmann fold) domain implicated in ligand binding and a HEPN (higher eukaryotes and prokaryotes nucleotide-binding) nuclease domain. Here, such a dual domain protein, i.e. the Sulfolobus islandicus Csx1 (SisCsx1) was characterized. The enzyme exhibited metal-independent single-strand specific ribonuclease activity. In fact, SisCsx1 showed a basal RNase activity in the absence of ligand; upon the binding of an RNA ligand carrying four continuous adenosines at the 3'-end (3'-tetra-rA), the activated SisCsx1 degraded RNA substrate with a much higher turnover rate. Amino acid substitution mutants of SisCsx1 were obtained, and characterization of these mutant proteins showed that the CARF domain of the enzyme is responsible for binding to 3'-tetra-rA and the ligand binding strongly activates RNA cleavage by the HEPN domain. Since RNA polyadenylation is an important step in RNA decay in prokaryotes, and poly(A) RNAs can activate CARF domain proteins, the poly(A) RNA may function as an important signal in the cellular responses to viral infection and environmental stimuli, leading to degradation of both viral and host transcripts and eventually to cell dormancy or cell death.


Assuntos
Proteínas Arqueais/metabolismo , Endorribonucleases/metabolismo , RNA Mensageiro/química , Sulfolobus/enzimologia , Regulação Alostérica , Proteínas Arqueais/química , Endorribonucleases/química , Ligantes , Metais/metabolismo , Poli A/química , Ligação Proteica , Domínios Proteicos , Clivagem do RNA , Sulfolobus/metabolismo
7.
Nucleic Acids Res ; 45(15): 8978-8992, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28911114

RESUMO

CRISPR-Cas system provides the adaptive immunity against invading genetic elements in prokaryotes. Recently, we demonstrated that Csa3a regulator mediates spacer acquisition in Sulfolobus islandicus by activating the expression of Type I-A adaptation cas genes. However, links between the activation of spacer adaptation and CRISPR transcription/processing, and the requirement for DNA repair genes during spacer acquisition remained poorly understood. Here, we demonstrated that de novo spacer acquisition required Csa1, Cas1, Cas2 and Cas4 proteins of the Sulfolobus Type I-A system. Disruption of genes implicated in crRNA maturation or DNA interference led to a significant accumulation of acquired spacers, mainly derived from host genomic DNA. Transcriptome and proteome analyses showed that Csa3a activated expression of adaptation cas genes, CRISPR RNAs, and DNA repair genes, including herA helicase, nurA nuclease and DNA polymerase II genes. Importantly, Csa3a specifically bound the promoters of the above DNA repair genes, suggesting that they were directly activated by Csa3a for adaptation. The Csa3a regulator also specifically bound to the leader sequence to activate CRISPR transcription in vivo. Our data indicated that the Csa3a regulator couples transcriptional activation of the CRISPR-Cas system and DNA repair genes for spacer adaptation and efficient interference of invading genetic elements.


Assuntos
Proteínas Arqueais/genética , Sistemas CRISPR-Cas , Reparo do DNA , DNA Arqueal/genética , Regulação da Expressão Gênica em Archaea , Sulfolobus/genética , Ativação Transcricional , Proteínas Arqueais/imunologia , Sequência de Bases , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/imunologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA Helicases/genética , DNA Helicases/imunologia , DNA Polimerase II/genética , DNA Polimerase II/imunologia , DNA Arqueal/imunologia , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/imunologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/imunologia , Regiões Promotoras Genéticas , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Sulfolobus/imunologia
8.
Nucleic Acids Res ; 44(4): e34, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26467477

RESUMO

CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are widespread in archaea and bacteria, and research on their molecular mechanisms has led to the development of genome-editing techniques based on a few Type II systems. However, there has not been any report on harnessing a Type I or Type III system for genome editing. Here, a method was developed to repurpose both CRISPR-Cas systems for genetic manipulation in Sulfolobus islandicus, a thermophilic archaeon. A novel type of genome-editing plasmid (pGE) was constructed, carrying an artificial mini-CRISPR array and a donor DNA containing a non-target sequence. Transformation of a pGE plasmid would yield two alternative fates to transformed cells: wild-type cells are to be targeted for chromosomal DNA degradation, leading to cell death, whereas those carrying the mutant gene would survive the cell killing and selectively retained as transformants. Using this strategy, different types of mutation were generated, including deletion, insertion and point mutations. We envision this method is readily applicable to different bacteria and archaea that carry an active CRISPR-Cas system of DNA interference provided the protospacer adjacent motif (PAM) of an uncharacterized PAM-dependent CRISPR-Cas system can be predicted by bioinformatic analysis.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de RNA/genética , Sulfolobus/genética , DNA/genética , Genoma Arqueal , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA