Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
PLoS Pathog ; 20(7): e1012352, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39024388

RESUMO

CD4+ T cells are central mediators of protective immunity to blood-stage malaria, particularly for their capacity in orchestrating germinal center reaction and generating parasite-specific high-affinity antibodies. T follicular helper (Tfh) cells are predominant CD4+ effector T cell subset implicated in these processes, yet the factors and detailed mechanisms that assist Tfh cell development and function during Plasmodium infection are largely undefined. Here we provide evidence that receptor for activated C kinase 1 (RACK1), an adaptor protein of various intracellular signals, is not only important for CD4+ T cell expansion as previously implied but also plays a prominent role in Tfh cell differentiation and function during blood-stage Plasmodium yoelii 17XNL infection. Consequently, RACK1 in CD4+ T cells contributes significantly to germinal center formation, parasite-specific IgG production, and host resistance to the infection. Mechanistic exploration detects specific interaction of RACK1 with STAT3 in P. yoelii 17XNL-responsive CD4+ T cells, ablation of RACK1 leads to defective STAT3 phosphorylation, accompanied by substantially lower amount of STAT3 protein in CD4+ T cells, whereas retroviral overexpression of RACK1 or STAT3 in RACK1-deficient CD4+ T cells greatly restores STAT3 activity and Bcl-6 expression under the Tfh polarization condition. Further analyses suggest RACK1 positively regulates STAT3 stability by inhibiting the ubiquitin-proteasomal degradation process, thus promoting optimal STAT3 activity and Bcl-6 induction during Tfh cell differentiation. These findings uncover a novel mechanism by which RACK1 participates in posttranslational regulation of STAT3, Tfh cell differentiation, and subsequent development of anti-Plasmodium humoral immunity.


Assuntos
Diferenciação Celular , Malária , Plasmodium yoelii , Receptores de Quinase C Ativada , Fator de Transcrição STAT3 , Células T Auxiliares Foliculares , Animais , Receptores de Quinase C Ativada/metabolismo , Fator de Transcrição STAT3/metabolismo , Malária/imunologia , Malária/parasitologia , Camundongos , Plasmodium yoelii/imunologia , Células T Auxiliares Foliculares/imunologia , Células T Auxiliares Foliculares/metabolismo , Camundongos Endogâmicos C57BL , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Camundongos Knockout , Centro Germinativo/imunologia
2.
Sensors (Basel) ; 24(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38931641

RESUMO

Few-layer black phosphorus (FLBP) is a highly promising material for high sensitivity label-free surface plasmon resonance (SPR) sensors due to its exceptional electrical, optical, and mechanical properties. FLBP exhibits inherent anisotropy with different refractive indices along its two main crystal orientations, the zigzag and armchair axes. However, this anisotropic property is often overlooked in FLBP-based sensors. In this study, we conducted a comprehensive investigation of the SPR reflectivity and phase in a BK7-Ag-FLBP structure to understand the influence of the stacking sequence and the number of FLBP layers on the sensing performance. Clear resonant angle shifts caused by different stacking sequences of FLBP could be observed both theoretically and experimentally. In the theoretical study, the highest reflective and phase sensitivities were achieved with a 12-layer black phosphorus (BP) structure. The reflectivity sensitivity reached 287.9°/refractive index units (RIU) with the zz stacking 12-layer BP film exhibiting a sensitivity 76°/RIU higher than the ac stacking structure. Similarly, the phase sensitivity reached 1162°/RIU with the zz stacking 12-layer BP structure showing a sensitivity 276.9°/RIU higher than the ac stacking structure. The electric field distribution of the 12-layer BP structure with four different stacking sequences has also been analyzed. In the experiment study, the well-known Attenuated Total Reflection (ATR) θ-2θ SPR setup is utilized to detect the reflectivity and phase of BK7-Ag-FLBP structures. The FLBP samples with the same thickness but different stacking sequences show significant resonant angle shift (0.275°) and maximum phase difference variation (34.6°). The FLBP sample thickness and crystal orientations have been demonstrated using the angular-resolved polarized Raman spectroscopy (ARPRS). These theoretical and experimental results provide strong evidence that the stacking sequences of FLBP have a significant impact on the sensing performance of SPR sensors. By harnessing the anisotropic properties of materials like FLBP, novel structures of anisotropic-2D material-based SPR sensors could open up exciting possibilities for innovative applications.

3.
Nanomaterials (Basel) ; 14(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38727330

RESUMO

Lossy mode resonance (LMR) sensors offer a promising avenue to surpass the constraints of conventional surface plasmon resonance (SPR) sensors by delivering enhanced label-free detection capabilities. A notable edge of LMR over SPR is its excitation potential by both transverse electric (TE) and transverse magnetic (TM) polarized light. Yet this merit remains underexplored due to challenges to achieving high sensing performance under both TM and TE polarization within a singular LMR model. This study introduces a theoretical model for an LMR prism refractive index sensor based on a MgF2-few layer black phosphorus-MgF2 configuration, which can achieve angular sensitivity nearing 90° refractive index unit-1 (RIU-1) for both polarizations. Leveraging the distinct anisotropic nature of black phosphorus, the figure of merit (FOM) values along its two principal crystal axes (zigzag and armchair) show great difference, achieving an impressive FOM of 1.178 × 106 RIU-1 along the zigzag direction under TE polarized light and 1.231 × 104 RIU-1 along the armchair direction under TM polarized light. We also provide an analysis of the electric field distribution for each configuration at its respective resonant conditions. The proposed structure paves the way for innovative applications of anisotropic-material-based LMR sensors in various applications.

4.
Trends Parasitol ; 38(6): 478-488, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35307299

RESUMO

Parasitic diseases are still the common diseases that seriously threaten human health and life, and a better understanding of host-parasite interactions is the key to effectively controlling and ultimately eradicating these diseases. MicroRNAs (miRNAs) are ubiquitously expressed in almost all eukaryotic parasites and their hosts. These regulatory noncoding RNAs can be released by donor cells and absorbed by distant recipient cells within individual organisms. Recent studies illustrate numerous examples of cross-species miRNA exchanges within the context of host-parasite interactions. Here we review the literature demonstrating that cross-species miRNAs are consistently present in parasites or their hosts, and detail their functional responses in host defense or parasite survival and pathogenesis.


Assuntos
MicroRNAs , Parasitos , Doenças Parasitárias , Animais , Interações Hospedeiro-Parasita/genética , Humanos , MicroRNAs/genética , Parasitos/genética
5.
Front Cell Infect Microbiol ; 12: 786543, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35174106

RESUMO

Previous studies have demonstrated miRNAs derived from plants and parasites can modulate mammalian gene expression and cell phenotype in a cross-kingdom manner, leading to occurrence of diseases or strengthening resistance of host to diseases such as cancer. In this study, we identified a schistosome miRNA (named Sja-miR-71a) through screening of 57 Schistosoma japonicum miRNAs that exerts antitumor activity in vitro and in vivo models. We demonstrated presence of this parasite miRNA in liver cells during infection. We showed that Sja-miR-71a arrested cell cycle at G0/G1 phase of hepatoma cell lines and inhibited cell proliferation in vitro. The HepG2 transfected with Sja-miR-71a mimics displayed significant reduction of migration and colony formation. Further, growth of the tumor cells transfected with the Sja-miR-71a mimics was obviously suppressed in a xenograft mouse model. Mechanically, we found the antitumor activity of Sja-miR-71a was through targeting a host gene encoding Frizzled Class Receptor 4 (FZD4), as FZD4 small interfering RNAs (siRNAs) generated a similar inhibitory effect on the tumor. These data indicated that Sja-miR-71a is a tumor suppressor miRNA and suggested this parasite-derived miRNA as a potential therapeutic target for cancer.


Assuntos
Carcinoma Hepatocelular , Receptores Frizzled , MicroRNAs , Schistosoma japonicum , Animais , Carcinoma Hepatocelular/genética , Ciclo Celular , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Receptores Frizzled/genética , Humanos , Camundongos , MicroRNAs/genética , Schistosoma japonicum/genética , Terapia com Helmintos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Front Immunol ; 12: 726920, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671347

RESUMO

Background: The lack of suitable diagnostic tools contributes to the high prevalence of tuberculosis (TB) worldwide. Serological tests, based on multiple target antigens, represent an attractive option for diagnosis of this disease due to their rapidity, convenience, and low cost. Methods: Measures to reduce non-specific reactions and thereby improve the specificity of serological tests were investigated, including blocking antibodies against common bacteria in serum samples and synthesizing polypeptides covering non-conserved dominant B-cell epitopes of antigens. In addition, a fusion polyprotein containing HspX and eight other antigen sequences was constructed and expressed to increase overall sensitivity of the tests. Results: Inclusion of Escherichia coli lysate partially increased the specificity of the serological tests, while synthesis and inclusion of peptides containing non-conserved sequences of TB antigens as well as dominant B-cell epitopes reduced non-specific reactions without a decrease in sensitivity of the tests. A polyprotein fusing HspX and eight other antigen sequences was constructed and displayed 60.2% sensitivity, which was higher than that of HspX and the other individual antigen segments. Moreover, the specificity of the polyprotein was 93.8%, which was not significantly decreased when compared with HspX and the other individual antigen segments. Conclusions: The roles of the fusion polyprotein in the humoral immune response against TB infection were demonstrated and provide a potential novel approach for the development of TB diagnostics.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Poliproteínas/imunologia , Proteínas Recombinantes de Fusão/imunologia , Tuberculose/diagnóstico , Adsorção , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/genética , Bactérias/química , Bactérias/genética , Bactérias/imunologia , Proteínas de Bactérias/genética , Sequência de Bases , Epitopos de Linfócito B/imunologia , Humanos , Imunidade Humoral , Imunoglobulina G/imunologia , Poliproteínas/genética , Testes Sorológicos , Tuberculose/imunologia
7.
Front Oncol ; 11: 652395, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34221971

RESUMO

MicroRNA (miRNA) is an important regulator for gene expression. Recent studies showed that some heterogenous miRNAs derived from both parasite and plant can regulate expression of mammalian gene in a cross-species or even a cross-kingdom manner. Here, we identified a Schistosoma japonicum miRNA (designated as sja-miR-61) that is present in the hepatocyte of mice infected with the parasite. The sja-miR-61 mimics significantly inhibited the migration of both mouse and human hepatoma cells in vitro. In a xenograft animal model, significant reductions of the tumor volume and weight were observed in mice inoculated with hepatoma cells transfected with sja-miR-61 mimics compared to the controls. We found that the in vivo inhibition of tumor growth was through its anti-angiogenesis activity. Mechanically, we identified the phosphoglycerate mutase 1 (PGAM1) gene as a target of sja-miR-61 and found that the sja-miR-61-mediated suppression of cell migration and anti-angiogenesis by cross-species down-regulation of PGAM1 expression. These data indicated that sja-miR-61 is a tumor suppressor miRNA that may have therapeutic potential for human cancers.

8.
Sci Immunol ; 6(61)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330814

RESUMO

IL-33-associated type 2 innate immunity has been shown to support beige fat formation and thermogenesis in subcutaneous inguinal white adipose tissue (iWAT), but little is known about how it is regulated in iWAT. Chemerin, as a newly identified adipokine, is clinically associated with obesity and metabolic disorders. We here show that cold exposure specifically reduces chemerin and its receptor chemerin chemokine-like receptor 1 (CMKLR1) expression in iWAT. Lack of chemerin or adipocytic CMKLR1 enhances cold-induced thermogenic beige fat via potentiating type 2 innate immune responses. Mechanistically, we identify adipocytes, particularly beige adipocytes, as the main source for cold-induced IL-33, which is restricted by the chemerin-CMKLR1 axis via dampening cAMP-PKA signaling, thereby interrupting a feed-forward circuit between beige adipocytes and type 2 innate immunity that is required for cold-induced beige fat and thermogenesis. Moreover, specific deletion of adipocytic IL-33 inhibits cold-induced beige fat and type 2 innate immune responses. Last, genetic blockade of adipocytic CMKLR1 protects against diet-induced obesity and enhances the metabolic benefits of cold stimulation in preestablished obese mice. Thus, our study identifies the chemerin-CMKLR1 axis as a physiological negative regulator of thermogenic beige fat via interrupting adipose-immune communication and suggests targeting adipose CMKLR1 as a potential therapeutic strategy for obesity-related metabolic disorders.


Assuntos
Adipócitos Bege/fisiologia , Quimiocinas/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Interleucina-33/fisiologia , Receptores de Quimiocinas/fisiologia , Termogênese , Adipócitos/fisiologia , Adipócitos Bege/imunologia , Animais , Quimiocinas/genética , Quimiocinas/imunologia , Temperatura Baixa , Dieta Hiperlipídica , Humanos , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Interleucina-33/imunologia , Masculino , Camundongos Transgênicos , Obesidade/imunologia , Obesidade/fisiopatologia , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/imunologia
9.
PLoS One ; 15(12): e0243667, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33332436

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0104323.].

10.
Artigo em Inglês | MEDLINE | ID: mdl-32232014

RESUMO

Schistosomiasis remains a serious parasitic disease, which is characterized by granulomatous inflammation and hepatic fibrosis. MicroRNAs derived from parasites can regulate host genes and cell phenotype. Here, we showed that a miRNA derived from S. japonicum (Sja-miR-1) exists in the hepatic stellate cells (HSCs) of mice infected with the parasite and up-regulates the expression of collagens and α-SMA by targeting secreted frizzled-related protein 1 (SFRP1). A vector-mediated delivery of Sja-miR-1 into naive mice led to hepatic fibrogenesis in the mice. Accordingly, inhibition of Sja-miR-1 in the infected mice led to reduction of the parasite-induced hepatic fibrosis. The mechanism behind the Sja-miR-1-mediated activation of HSC could be through targeting SFRP1 to regulate the Wnt/ß-catenin pathway. These findings reveal that parasite-derived small non-coding RNAs are implicated in cross-species regulation of host pathological process and persistent inhibition of Sja-miR-1 may provide a therapeutic potential for the parasite diseases.


Assuntos
MicroRNAs , Schistosoma japonicum , Esquistossomose , Animais , Peptídeos e Proteínas de Sinalização Intracelular , Cirrose Hepática , Camundongos , MicroRNAs/genética , Schistosoma japonicum/genética
11.
Appl Opt ; 59(2): 315-323, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32225309

RESUMO

Because the physical properties of lithium niobate (LiNbO3) strongly depend on composition, accurate and convenient methods for the determination of the composition are of great significance. Although several optical methods, including the measurement of UV absorption edge, the birefringence, and the second-harmonic generation, have been proved to be convenient for an accurate and fast standard determination of composition in LiNbO3 single crystals, their research and commercial applications are limited by the doping component and the complex nonlinear relationships. Based on preliminary work, a novel optical method to determine the composition of LiNbO3 crystals by digital holography is proposed. This method is based on the static internal field, which is obtained by means of the three-dimensional (3D) static measurement of the phase difference between antiparallel poling states without applying external voltage by digital holography. In order to investigate the influences of composition and doping on the static internal field in LiNbO3 crystals, the measured static internal fields from various LiNbO3 samples with different stoichiometry, doping type, and doping level are summarized and compared. Excluding the influence of dopant, the composition has been proved to be a unique key influencing factor on the static internal field in LiNbO3 crystals. A systematic measurement based on the static internal field from various sources with compositions ranging from 48.5 to 49.9 mol.% (Li/[Li+Nb] ratio) has been carried out. The approximate linear fit between the static internal field and composition can provide an easy, reliable, and sensitive determination of the composition in undoped and doped LiNbO3 samples.

12.
J Hepatol ; 72(3): 519-527, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31738999

RESUMO

BACKGROUND & AIMS: MicroRNAs (MiRNAs) derived from parasites, and even from plants, have been detected in body fluids and are known to modulate host genes. In this study, we aimed to investigate if the schistosome miRNAs are involved in the occurrence and progression of hepatic fibrosis during Schistosoma japonicum (S. japonicum) infection. METHODS: The presence of miRNAs from S. japonicum (sja-miRNAs) in hepatic stellate cells (HSCs) was detected by RNA sequencing. sja-miRNAs were screened by transfecting HSCs with sja-miRNA mimics. The role of sja-miR-2162 in hepatic fibrosis was evaluated by either elevating its expression in naïve mice or by inhibiting its activity in infected mice, through administration of recombinant adeno-associated virus serotype 8 vectors expressing sja-miR-2162 or miRNA sponges, respectively. RESULTS: We identified a miRNA of S. japonicum, sja-miR-2162, that was consistently present in the HSCs of infected mice. Transfection of sja-miR-2162 mimics led to activation of HSC cells in vitro, characterized by elevation of collagens and α-SMA. The rAAV8-mediated delivery of sja-miR-2162 to naïve mice induced hepatic fibrosis, while sustained inhibition of sja-miR-2162 in infected mice attenuated hepatic fibrosis. The transforming growth factor beta receptor III (TGFBR3), a negative regulator of TGF-ß signaling, was a direct target of sja-miR-2162 in HSCs. CONCLUSIONS: This study demonstrated that pathogen-derived miRNAs directly promote hepatic fibrogenesis in a cross-species manner, and their efficient and sustained inhibition might present a promising therapeutic intervention for infectious diseases. LAY SUMMARY: A schistosome-specific microRNA, sja-miR-2162, is consistently present in the hepatic stellate cells of mice infected with S. japonicum, where it promotes hepatic fibrosis in the host through cross-species regulation of host fibrosis-related genes. The efficient and sustained inhibition of pathogen-derived micRNAs may represent a novel therapeutic intervention for infectious diseases.


Assuntos
Interações Hospedeiro-Parasita/genética , Cirrose Hepática/genética , Cirrose Hepática/parasitologia , MicroRNAs/genética , Proteoglicanas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Schistosoma japonicum/genética , Esquistossomose Japônica/complicações , Actinas/biossíntese , Animais , Linhagem Celular , Colágeno/biossíntese , Dependovirus/genética , Vetores Genéticos , Células Estreladas do Fígado/parasitologia , Humanos , Masculino , Camundongos , Ratos , Esquistossomose Japônica/parasitologia , Análise de Sequência de RNA , Transdução de Sinais/genética , Transfecção
13.
Front Genet ; 10: 1065, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737048

RESUMO

Plasmodium falciparum isolates from China-Myanmar border (CMB) have experienced regional special selective pressures and adaptive evolution. However, the genomes of P. falciparum isolates from this region to date are poorly characterized. Herein, we performed whole-genome sequencing of 34 P. falciparum isolates from CMB and a series of genome-wide sequence analyses to reveal their genetic diversity, population structures, and comparisons with the isolates from other epidemic regions (Thai-Cambodia border, Thai-Myanmar border, and West Africa). Totally 59,720 high-quality single-nucleotide polymorphisms (SNPs) were identified in the P. falciparum isolates from CMB, with average nucleotide diversity (π = 4.59 × 10-4) and LD decay (132 bp). The Tajima's D and Fu and Li's D values of the CMB isolates were -0.8 (p < 0.05) and -0.84 (p < 0.05), respectively, suggesting a demographic history of recent population expansion or purifying selection. Moreover, 78 genes of the parasite were identified that could be under positive selection, including those genes conferring drug resistance such as pfubp1. In addition, 33 SNPs were identified for tracing the source of the parasites with a high accuracy by analysis of the most differential SNPs among the four epidemic regions. Collectively, our data demonstrated high diversity of the CMB isolates' genomes forming a distinct population, and the identification of 33-SNP barcode provides a valuable surveillance of parasite migration among the regions.

14.
Mol Ther Nucleic Acids ; 18: 400-412, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31655260

RESUMO

Schistosoma japonicum eggs trapped in host liver secretes microRNA (miRNA)-containing extracellular vesicles (EVs) that can be transferred to host cells. Recent studies demonstrated that miRNAs derived from plants can modulate gene expression and phenotype of mammalian cells in a cross-kingdom manner. In this study, we identified a Schistosoma japonicum miRNA (e.g., Sja-miR-3096) that is present in the hepatocytes of mice infected with the parasite and has notable antitumor effects in both in vitro and in vivo models. The Sja-miR-3096 mimics suppressed cell proliferation and migration of both murine and human hepatoma cell lines by targeting phosphoinositide 3-kinase class II alpha (PIK3C2A). We generated a murine hepatoma cell line that stably expressed the pri-Sja-miR-3096 gene and demonstrated cross-species processing of the schistosome pri-miRNA to the mature Sja-miR-3096 in the mammalian cell. Importantly, inoculation of this cell line into the scapula and livers of mice led to a complete suppression of tumorigenesis of the hepatoma cells. Moreover, tumor weight was significantly reduced on intravenous administration of Sja-miR-3096 mimics. Thus, the schistosome miRNA-mediated antitumor activity occurs in host liver cells during schistosome infection, which may strengthen resistance of host to liver cancer, and discovery and development of such miRNAs may present promising interventions for cancer therapy.

15.
Front Oncol ; 9: 175, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30967999

RESUMO

MicroRNAs (miRNAs) play important roles in human diseases, such as cancer. Human miRNA-7-5p is a tumor suppressor miRNA that inhibits tumor growth by regulating multiple oncogenic signal pathways. Recently, studies revealed that plant miRNAs could regulate mammalian gene expression in a cross-kingdom manner. Schistosoma japonicum miRNA-7-5p (designated as sja-miR-7-5p) is conserved between the parasites and mammals. Thus, we investigated whether sja-miR-7-5p has similar antitumor activity to its mammalian counterpart. We first showed that sja-miR-7-5p was detected in host hepatocytes during S. japonicum infection. The sja-miR-7-5p mimics significantly inhibited the growth, migration, and colony formation of mouse and human hepatoma cell lines in vitro, and induced G1/G0 cell cycle arrest. In a xenograft animal model, the tumor volume and weight were significantly reduced in mice inoculated with hepatoma cells transfected with sja-miR-7-5p mimics compared with those transfected with NC miRNAs. Furthermore, the antitumor activity of sja-miR-7-5p was suggested by cross-species downregulation of the S-phase kinase-associated protein 2 gene in the host. Thus, sja-miR-7-5p is translocated into hepatocytes and exerts its anti-cancer activities in mammals, implying that sja-miR-7-5p might strengthen host resistance to hepatocellular carcinoma during schistosome infection.

16.
Mol Ther Methods Clin Dev ; 11: 73-82, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30406154

RESUMO

Infection with Schistosoma causes aberrant expression of host microRNAs (miRNAs), and normalizing the levels of dysregulated miRNAs can attenuate pathology. Here, we show that the host miRNA, miR-96, is markedly upregulated during the progression of hepatic schistosomiasis. We demonstrate that elevation of miR-96 induces hepatic fibrosis in infected mice by suppressing the expression of its target gene, Smad7. We show that infection with Schistosoma induces the expression of transforming growth factor ß1 (TGF-ß1), which in turn upregulates the expression of miR-96 through SMAD2/3-DROSHA-mediated post-transcriptional regulation. Furthermore, inhibition of miR-96 with recombinant adeno-associated virus 8 (rAAV8)-mediated delivery of Tough Decoy RNAs in mice attenuated hepatic fibrosis and prevented lethality following schistosome infection. Taken together, our data highlight the potential for rAAV8-mediated inhibition of miR-96 as a therapeutic strategy to treat hepatic schistosomiasis.

17.
PLoS Pathog ; 14(11): e1007440, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30462731

RESUMO

CD4+ T cells play predominant roles in protective immunity against blood-stage Plasmodium infection, both for IFN-γ-dependent effector mechanisms and providing B cell helper signals. Neddylation, an ubiquitination-like process triggered by covalent conjugation of NEDD8 to specific targets, has emerged as a potential regulator of T cell activities to TCR engagement. However, its contribution to T cell-mediated immunity to blood-stage malaria remains unclear. Here using an experimental model induced by Plasmodium yoelii 17XNL, and conditional knockout mice with T cell-specific deficiency of crucial components of neddylation pathway, we demonstrate activation of neddylation in T cells during blood-stage Plasmodium infection is essential for parasite control and host survival. Mechanistically, we show that apart from promoting CD4+ T cell activation, proliferation, and development of protective T helper 1 (Th1) cell response as suggested previously, neddylation is also required for supporting CD4+ T cell survival, mainly through B-cell lymphoma-2 (Bcl-2) mediated suppression of the mitochondria-dependent apoptosis. Furthermore, we provide evidence that neddylation contributes to follicular helper T (Tfh) cell differentiation, probably via augmenting the ubiquitin ligase Itch activity and proteasomal degradation of FoxO1, thereby facilitating germinal center (GC) formation and parasite-specific antibody production. This study identifies neddylation as a positive regulator of anti-Plasmodium immunity and provides insight into an involvement of such pathway in host resistance to infectious diseases.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Malária/imunologia , Proteína NEDD8/fisiologia , Imunidade Adaptativa/imunologia , Animais , Linfócitos B/imunologia , Imunidade Celular , Interferon gama/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL/fisiologia , Camundongos Knockout , Proteína NEDD8/metabolismo , Plasmodium yoelii/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Células Th1/imunologia
18.
F1000Res ; 72018.
Artigo em Inglês | MEDLINE | ID: mdl-30345011

RESUMO

Schistosomiasis is a serious but neglected tropical infectious disease, afflicting more than 240 million people in 78 countries. Lack of an effective vaccine and obscuring disease mechanism could be the main hurdles to effectively control and eradicate this disease. A better understanding of the host-schistosome interaction is the key to clearing these hurdles. Recently, accumulating evidence shows that alarmin cytokines and microRNAs (miRNAs) are crucial regulators in the host-schistosome interaction. Alarmin cytokines are proven to be potent mechanisms driving type 2 immunity, which is the central disease mechanism of schistosomiasis. MiRNA deregulation is a hallmark of a variety of human diseases, including schistosomiasis. In this review, we summarize the research advances on the role of alarmin cytokines and miRNAs in the host-schistosome interaction.


Assuntos
Alarminas/fisiologia , Interações Hospedeiro-Patógeno , MicroRNAs/fisiologia , Alarminas/imunologia , Animais , Citocinas , Humanos , Schistosoma , Esquistossomose/imunologia
19.
Front Microbiol ; 9: 1695, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30140260

RESUMO

Schistosomiasis japonica is one of the most prevalent parasitic diseases in China. The scarcity of effective diagnostic tools is a major factor that contributes to the high prevalence of schistosomiasis japonica. SjSP-13 is a promising serological diagnostic biomarker of the disease. However, it is unclear whether polymorphisms in SjSP-13 affect its diagnostic efficacy and immunogenicity. Here, we found the SjSP-13 gene was highly polymorphic, and all the alleles of the gene were clustered into two clades, clade A and B. SjSP-13.6 and SjSP-13.25, the representative alleles of clade A and B, were produced in Escherichia coli. The diagnostic value of SjSP-13.6 (AUC = 0.983 ± 0.006), was found to be similar to the SjSP-13.25 (AUC = 0.973 ± 0.009) by receiver operating characteristic (ROC) analysis. SjSP-13.6 and SjSP-13.25 have the same specificity (96.7%), while the sensitivity of SjSP-13.6 (90.4%) is slightly but not significantly higher than SjSP-13.25 (85.2%). The combination use of the two alleles (SjSP-13.6/25) didn't increase the diagnostic performance of SjSP-13 as the AUC value of SjSP-13.6/25 is 0.977 ± 0.009, lower than individual SjSP-13.6 (AUC = 0.983 ± 0.006). In addition, we found the immunogenicity of clade A alleles is significantly higher than clade B in Schistosoma japonicum naturally infected animals and patients, as the mean antibody levels of SjSP-13.6 was significantly higher than SjSP-13.25. We conclude that polymorphisms of the SjSP-13 gene should not affect its diagnostic efficacy, and it is not necessary to combine the alleles of the two clades for diagnosis of schistosomiasis.

20.
Malar J ; 17(1): 248, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29976207

RESUMO

BACKGROUND: Mutations in the Plasmodium falciparum k13 gene are associated with artemisinin (ART) resistance. However, it is unclear whether the F446I mutation, the most prevalent allele at the China-Myanmar border and north of Myanmar, is associated with ART resistance. Therefore, the aim of this study was to investigate the role of this mutation in ART resistance by generating transgenic parasites expressing the F446I mutant allele. METHODS: The transgenic parasites carrying the F446I or C580Y mutation in both 3D7 and FCC1/HN isolates were generated by single crossing-over recombination and verified using PCR and gene sequencing. The ring-stage survival assay of 0-3 h (RSA0-3 h) was used to evaluate ART susceptibility of the transgenic parasites in vitro. RESULTS: Four transgenic parasite lines named 3D7F446I mut, 3D7C580Y mut, FCC1/HNF446I mut and FCC1/HNC580Y mut were successfully generated. These parasite lines showed no changes in the expression level of k13 when compared with their parent parasite isolates. However, introduction of the F446I mutation in k13 of the 3D7 and FCC1/HN isolates led to elevated ring survival rates detected using RSA0-3 h when subjected to both 700 and 20 nM concentrations of dihydroartemisinin. The survival rates were similar to those detected in the parasite lines with the C580Y mutation. CONCLUSIONS: Insertion of the F446I mutation in k13 led to increased ring survival, suggesting that this mutation may be associated with ART resistance and could be used as a molecular marker for monitoring ART-resistant parasites. The results also highlights the importance of surveillance of F446I mutants for containing the resistant parasite.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Resistência a Medicamentos/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Microrganismos Geneticamente Modificados/efeitos dos fármacos , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/fisiologia , Mutação , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA