Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Photochem Photobiol B ; 245: 112735, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37302156

RESUMO

Excessive light exposure can potentially cause irreversible damage to the various photoreceptor cells, and this aspect has been considered as an important factor leading to the progression of the different retinal diseases. AMP-activated protein kinase (AMPK) and the mammalian target of rapamycin (mTOR) are crucial intracellular signaling hubs involved in the regulation of cellular metabolism, energy homeostasis, cellular growth and autophagy. A number of previous studies have indicated that either AMPK activation or mTOR inhibition can promote autophagy in most cases. In the current study, we have established an in vitro as well as in vivo photooxidation-damaged photoreceptor model and investigated the possible influence of visible light exposure in the AMPK/mTOR/autophagy signaling pathway. We have also explored the potential regulatory effects of AMPK/mTOR on light-induced autophagy and protection achieved by suppressing autophagy in photooxidation-damaged photoreceptors. We observed that light exposure led to a significant activation of mTOR and autophagy in the photoreceptor cells. However, intriguingly, AMPK activation or mTOR inhibition significantly inhibited rather than promoting autophagy, which was termed as AMPK-dependent inhibition of autophagy. In addition, either indirectly suppressing autophagy by AMPK activation/ mTOR inhibition or directly blocking autophagy with an inhibitor exerted a significant protective effect on the photoreceptor cells against the photooxidative damage. Neuroprotective effects caused by the AMPK-dependent inhibition of autophagy were also verified with a retinal light injured mouse model in vivo. Overall, our findings demonstrated that AMPK / mTOR pathway could inhibit autophagy through AMPK-dependent inhibition of autophagy to significantly protect the photoreceptors from photooxidative injury, which may aid to further develop novel targeted retinal neuroprotective drugs.


Assuntos
Proteínas Quinases Ativadas por AMP , Fármacos Neuroprotetores , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Células Fotorreceptoras/metabolismo , Fármacos Neuroprotetores/farmacologia , Sirolimo/farmacologia , Autofagia , Mamíferos/metabolismo
2.
Aging (Albany NY) ; 12(16): 16579-16596, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32858529

RESUMO

Excessive light exposure is a principal environmental factor, which can cause damage to photoreceptors and retinal pigment epithelium (RPE) cells and may accelerate the progression of age-related macular degeneration (AMD). In this study, oxidative stress, endoplasmic reticulum (ER) stress and autophagy caused by light exposure were evaluated in vitro and in vivo. Light exposure caused severe photo-oxidative stress and ER stress in photoreceptors (661W cells) and RPE cells (ARPE-19 cells). Suppressing either oxidative stress or ER stress was protective against light damage in 661W and ARPE-19 cells and N-acetyl-L-cysteine treatment markedly inhibited the activation of ER stress caused by light exposure. Moreover, suppressing autophagy with 3-methyladenine significantly attenuated light-induced cell death. Additionally, inhibiting ER stress either by knocking down PERK signals or with GSK2606414 treatment remarkably suppressed prolonged autophagy and protected the cells against light injury. In vivo experiments verified neuroprotection via inhibiting ER stress-related autophagy in light-damaged retinas of mice. In conclusion, the above results suggest that light-induced photo-oxidative stress may trigger subsequent activation of ER stress and prolonged autophagy in photoreceptors and RPE cells. Suppressing ER stress may abrogate over-activated autophagy and protect the retina against light injury.


Assuntos
Autofagia/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Luz/efeitos adversos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Acetilcisteína/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Antioxidantes/farmacologia , Autofagia/efeitos da radiação , Linhagem Celular , Estresse do Retículo Endoplasmático/efeitos da radiação , Humanos , Indóis/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos da radiação , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Células Fotorreceptoras de Vertebrados/efeitos da radiação , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/efeitos da radiação , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
3.
Cell Commun Signal ; 18(1): 27, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32066462

RESUMO

BACKGROUND: Excessive light exposure is a detrimental environmental factor that plays a critical role in the pathogenesis of retinal degeneration. However, the mechanism of light-induced death of retina/photoreceptor cells remains unclear. The mammalian/mechanistic target of rapamycin (mTOR) and Poly (ADP-ribose) polymerase-1 (PARP-1) have become the primary targets for treating many neurodegenerative disorders. The aim of this study was to elucidate the mechanisms underlying light-induced photoreceptor cell death and whether the neuroprotective effects of mTOR and PARP-1 inhibition against death are mediated through apoptosis-inducing factor (AIF). METHODS: Propidium iodide (PI)/Hoechst staining, lentiviral-mediated short hairpin RNA (shRNA), Western blot analysis, cellular fraction separation, plasmid transient transfection, laser confocal microscopy, a mice model, electroretinography (ERG), and hematoxylin-eosin (H & E) staining were employed to explore the mechanisms by which rapamycin/3-Aminobenzamide (3AB) exert neuroprotective effects of mTOR/PARP-1 inhibition in light-injured retinas. RESULTS: A parthanatos-like death mechanism was evaluated in light-injured 661 W cells that are an immortalized photoreceptor-like cell line that exhibit cellular and biochemical feature characteristics of cone photoreceptor cells. The death process featured over-activation of PARP-1 and AIF nuclear translocation. Either PARP-1 or AIF knockdown played a significantly protective role for light-damaged photoreceptors. More importantly, crosstalk was observed between mTOR and PARP-1 signaling and mTOR could have regulated parthanatos via the intermediate factor sirtuin 1 (SIRT1). The parthanatos-like injury was also verified in vivo, wherein either PARP-1 or mTOR inhibition provided significant neuroprotection against light-induced injury, which is evinced by both structural and functional retinal analysis. Overall, these results elucidate the mTOR-regulated parthanatos death mechanism in light-injured photoreceptors/retinas and may facilitate the development of novel neuroprotective therapies for retinal degeneration diseases. CONCLUSIONS: Our results demonstrate that inhibition of the mTOR/PARP-1 axis exerts protective effects on photoreceptors against visible-light-induced parthanatos. These protective effects are conducted by regulating the downstream factors of AIF, while mTOR possibly interacts with PARP-1 via SIRT1 to regulate parthanatos. Video Abstract Schematic diagram of mTOR interacting with PARP-1 to regulate visible light-induced parthanatos. Increased ROS caused by light exposure penetrates the nuclear membrane and causes nuclear DNA strand breaks. PARP-1 detects DNA breaks and synthesizes PAR polymers to initiate the DNA repair system that consumes a large amount of cellular NAD+. Over-production of PAR polymers prompts the release of AIF from the mitochondria and translocation to the nucleus, which leads to parthanatos. Activated mTOR may interact with PARP-1 via SIRT1 to regulate visible light-induced parthanatos.


Assuntos
Luz/efeitos adversos , Parthanatos , Células Fotorreceptoras de Vertebrados , Poli(ADP-Ribose) Polimerase-1/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Animais , Fator de Indução de Apoptose/metabolismo , Linhagem Celular , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia
4.
Neural Plast ; 2019: 3017678, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984254

RESUMO

Limb spasms are phenomena of hyperreflexia that occur after spinal cord injury. Currently, the clinical treatment is less than ideal. Our goal is to develop a combination therapy based on individualized medicine to reduce spasticity after spinal cord injury. In this study, rats received a severe contusive injury at the T9 segment of the spinal cord, followed by gene therapy with adenoassociated virus encoding human neurotrophic factor 3 (AAV-NT3) and a 2-week exercise program starting at 4 weeks after injury. We quantified the frequency of spasms during a swimming test at 4 and 6 weeks after injury and confirmed the results of the swimming test by measuring the H-reflex of the plantar muscle. We obtained weekly hind limb exercise scores to assess the effect of the interventions in hind limb motor function improvement. Then, we used immunofluorescence to observe the immunoreactivity of spinal motor neurons, synaptophysin, cholinergic interneurons, and GABAergic interneurons. We also measured the expression of KCC2 in the spinal cord by western blot. We found that AAV-NT3 gene therapy, exercise, and combination therapy all attenuated the frequency of spasms in the swimming test conducted at 6 weeks after spinal cord injury and increased rate-dependent depression of H-reflex. Combination therapy was significantly superior to AAV-NT3 alone in protecting motor neurons. Recovery of KCC2 expression was significantly greater in rats treated with combination therapy than in the exercise group. Combination therapy was also significantly superior to individual therapies in remodeling spinal cord neurons. Our study shows that the combination of AAV-NT3 gene therapy and exercise can alleviate muscle spasm after spinal cord injury by altering the excitability of spinal interneurons and motor neurons. However, combination therapy did not show a significant additive effect, which needs to be improved by adjusting the combined strategy.


Assuntos
Terapia por Exercício/métodos , Terapia Genética/métodos , Espasticidade Muscular/terapia , Fatores de Crescimento Neural/genética , Traumatismos da Medula Espinal/complicações , Adenoviridae/fisiologia , Animais , Terapia Combinada , Feminino , Gânglios Espinais/metabolismo , Vetores Genéticos/administração & dosagem , Reflexo H , Injeções Intramusculares , Interneurônios/fisiologia , Neurônios Motores/fisiologia , Espasticidade Muscular/etiologia , Espasticidade Muscular/genética , Músculo Esquelético/metabolismo , Fatores de Crescimento Neural/metabolismo , Neurotrofina 3 , Ratos Wistar
5.
Free Radic Biol Med ; 129: 569-581, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30342188

RESUMO

Retinal degeneration is a major cause of severe vision loss and irreversible blindness and is characterized by progressive damage to retinal photoreceptor cells. Resveratrol (RSV) serves as an activator of the histone deacetylase, Sirt1, and has been shown to exert anti-oxidative properties. In this study, we mimicked retinal degeneration by subjecting photoreceptors (661 W cells) to glucose deprivation (GD) or light exposure. Under these conditions, we investigated the mechanisms underlying GD- or light exposure-induced cell death and the protective effect of RSV. We found that GD and light exposure resulted in mitochondrial dysfunction, oxidative stress, and cell death. Treatment of injured cells with RSV decreased the production of reactive oxygen species (ROS), improved the ratio of reduced/oxidized glutathione (GSH/GSSG), mitochondrial membrane potential and morphology, and reduced apoptosis. We used the caspase inhibitor, z-VAD-fmk, and a lentiviral-mediated shRNA knockdown of PARP-1 to reveal that GD and light exposure-induced cell death have different underlying mechanisms; GD triggered a caspase-dependent cell death pathway, whereas light exposure triggered a PARP-dependent cell death pathway. The level of caspase-9 and caspase-3, upregulated following GD, were reduced by treatment with RSV. Similarly, the level of PARP-1 and AIF, upregulated following light exposure, were decreased by treatment with RSV. Additionally, treatment with RSV elevated the protein expression and enzymatic activity of Sirt1 and a Sirt1 inhibitor reduced the protective effect of RSV against insult-induced cellular injuries, indicating that RSV's protective effect may involve Sirt1 activation. Finally, we investigated the neuroprotection of RSV in vivo. Administration of RSV to mice under extreme light exposure led to a suppression of the light-induced thinning of the outer nuclear layer (ONL) detected by hematoxylin and eosin (H&E) staining and restored retinal function evaluated by electroretinography (ERG). Taken together, our findings provide evidence that treatment with RSV has neuroprotective effects on both GD and light exposure-induced cell death pathways in photoreceptor cells.


Assuntos
Antioxidantes/farmacologia , Poli(ADP-Ribose) Polimerase-1/genética , Espécies Reativas de Oxigênio/antagonistas & inibidores , Resveratrol/farmacologia , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Fator de Indução de Apoptose/genética , Fator de Indução de Apoptose/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Inibidores de Caspase/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica , Glucose/deficiência , Glucose/farmacologia , Glutationa/metabolismo , Luz/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Transdução de Sinais/genética , Sirtuína 1/genética , Sirtuína 1/metabolismo
6.
J Environ Pathol Toxicol Oncol ; 37(4): 305-316, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30806237

RESUMO

Induced pluripotent stem cells (also called iPSCs) are somatic cells reprogrammed by overexpressing four nuclear transcriptional factors containing Sox2, Klf4, c-myc and Oct4 is the one of research hotspots. Its pluripotency, self-renewal capacity and wide accessibility to donor tissues have made possible the means for modified regenerative medicine. They are considered a possible basis of healthy tissue to cure diseases, like ophthalmic diseases, degenerative diseases, age-related macular degeneration (AMD), are primarily because of the weakening capability of photoreceptor cells, retinal ganglion cells (RGCs), retinal pigmented epithelium (RPE) or other retinal cells. And these retinal cells are unable to regenerate and currently there are no effective treatments to restore sight. iPSCs allow for the in vitro development of numerous varieties of retinal cells, and may treat these diseases by retinal transplantation. Although other stem cells could differentiate into retinal cells, iPSCs derived retinal cells might have numerous benefits as compared to other stem cell sources including embryonic stem (ES) cells. Mainly they would be directly obtained from the patient, therefore eradicating every probable chance of adverse immune responses. Second, making iPSCs just needs somatic cells, thus circumventing the valid ethical issues which limited the clinic use of ES cells derived from human. Third, iPSCs are parallel to ES cells in differentiation ability, they can be expanded in vitro and induced to differentiate into retinal cells, providing a renewable source for therapeutic applications and scientific researches. In this current review, we have concise latest progresses.


Assuntos
Células-Tronco Pluripotentes Induzidas/transplante , Doenças Retinianas/terapia , Transplante de Células-Tronco/métodos , Engenharia Tecidual/métodos , Animais , Humanos , Fator 4 Semelhante a Kruppel , Pesquisa Translacional Biomédica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA