Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39124346

RESUMO

Concrete structures frequently manifest diverse defects throughout their manufacturing and usage processes due to factors such as design, construction, environmental conditions and distress mechanisms. In this paper, a multilevel convolutional neural network (CNN) combined with array ultrasonic testing (AUT) is proposed for identifying the locations of hole defects in concrete structures. By refining the detection area layer by layer, AUT is used to collect ultrasonic signals containing hole defect information, and the original echo signal is input to CNN for the classification of hole locations. The advantage of the proposed method is that the corresponding defect location information can be obtained directly from the input ultrasonic signal without manual discrimination. It effectively addresses the issue of traditional methods being insufficiently accurate when dealing with complex structures or hidden defects. The analysis process is as follows. First, COMSOL-Multiphysics finite element software is utilized to simulate the AUT detection process and generate a large amount of ultrasonic echo data. Next, the extracted signal data are trained and learned using the proposed multilevel CNN approach to achieve progressive localization of internal structural defects. Afterwards, a comparative analysis is conducted between the proposed multilevel CNN method and traditional CNN approaches. The results show that the defect localization accuracy of the proposed multilevel CNN approach improved from 85.38% to 95.27% compared to traditional CNN methods. Furthermore, the computation time required for this process is reduced, indicating that the method not only achieves higher recognition precision but also operates with greater efficiency. Finally, a simple experimental verification is conducted; the results show that this method has strong robustness in recognizing noisy ultrasonic signals, provides effective solutions, and can be used as a reference for future defect detection.

2.
BMC Urol ; 24(1): 169, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118072

RESUMO

INTRODUCTION: Inflammatory and immunological responses are reported involved in the pathogenesis and progression of obstructive nephropathy (ON). This study was designed to investigate the characteristics of peripheral immunity in patients with upper urinary tract urolithiasis and analyze the underlying associations with renal function. METHODS: Patients with unilateral upper urinary tract urolithiasis meeting the operation indications were prospectively enrolled. Preoperative circulating immune cells and inflammatory cytokines were detected in our clinical laboratory, and the indicators of renal function and calculi related parameters were particularly recorded. Patients were sectionalized into subgroups on the basis of the lesion of calculi. Characteristics of peripheral immunity in each subgroup were investigated by statistical approaches, and the underlying correlations with the degree of hydronephrosis (HN) and renal function were discussed in corresponding group. RESULTS: Patients with ureteral calculi presented severer HN compared with renal calculi, especial middle ureteral calculi, acting as the chief culprit of ON, exhibiting the highest serum creatine and blood urea nitrogen, most impaired estimated glomerular filtration rate, and severest HN. In addition, serum interleukin-8 (IL-8) and IL-6 were demonstrated presenting statistical differences between ureteral calculi and renal calculi patients, exhibiting underlying values in comprehending ON. However, circulating immune cells were demonstrated no obvious differences among groups. CONCLUSIONS: Circulating inflammatory cytokines, referred in particular to serum IL-8 and IL-6 were partially associated with kidney injury in patients with upper urinary tract urolithiasis. But the specific influences and mechanisms between them needed to be investigated furthermore.


Assuntos
Cálculos Ureterais , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Cálculos Ureterais/imunologia , Cálculos Ureterais/complicações , Adulto , Estudos Prospectivos , Cálculos Renais/imunologia , Rim/imunologia , Rim/fisiopatologia , Hidronefrose/sangue , Hidronefrose/etiologia , Hidronefrose/imunologia , Urolitíase/imunologia , Citocinas/sangue , Idoso , Estudos Transversais
3.
Adv Sci (Weinh) ; : e2404839, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083318

RESUMO

Topological phononic cavities, such as ring resonators with topological whispering gallery modes (TWGMs), offer a flexible platform for the realization of robust phononic circuits. However, the chiral mechanism governing TWGMs and their selective routing in integrated phononic circuits remain unclear. This work reveals, both experimentally and theoretically, that at a phononic topological interface, the elastic spin texture is intricately linked to, and can be explained through a knowledge of, the phonon eigenmodes inside each unit cell. Furthermore, for paired, counterpropagating TWGMs based on such interfaces in a waveguide resonator, this study demonstrates that the elastic spin exhibits locking at discrete frequencies. Backed up by theory, experiments on kHz TWGMs in thin honeycomb-lattice aluminum plates bored with clover-leaf shaped holes show that together with this spin-texture related angular-momentum locking mechanism at a single topological interface, there are triplicate parity-frequency-space selective wave routing mechanisms. In the future, these mechanisms can be harnessed for the versatile manipulation of elastic-spin based routing in phononic topological insulators.

4.
Medicine (Baltimore) ; 103(9): e37254, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428885

RESUMO

Dietary patterns have a significant impact on the occurrence of urolithiasis. This study aimed to investigate the causal relationships between the consumption of glucosamine, fresh fruits, and tea, and the predisposition to urinary stones using a Mendelian randomization (MR) approach. Genetic proxies for these dietary factors were obtained from the UK Biobank, while the summary data for urolithiasis genome-wide association analyses were sourced from the FinnGen consortium. Five MR methodologies, namely inverse variance weighted (IVW), MR-Egger regression, weighted median, weighted mode, and simple mode, were employed in the analysis. To validate the findings, sensitivity evaluations such as the MR-PRESSO disruption test and Cochran Q test for heterogeneity were performed. The IVW method showed that glucosamine consumption had a strong inverse association with urolithiasis risk (Odds Ratio [OR] = 0.006, 95% Confidence Interval [CI] 0.0001-0.287, P = .009), surpassing the associations of fresh fruits (OR = 0.464, 95% CI 0.219-0.983, P = .045) and tea (OR = 0.550, 95% CI 0.345-0.878, P = .012). These findings were consistent when verified using alternative MR techniques, and the sensitivity analyses further supported their credibility. The results of this MR analysis demonstrate that regular consumption of glucosamine, fresh fruits, and tea is inversely correlated with the risk of developing urolithiasis.


Assuntos
Frutas , Urolitíase , Humanos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Urolitíase/epidemiologia , Urolitíase/genética , Glucosamina , Chá/efeitos adversos
5.
Heliyon ; 10(4): e25704, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38404890

RESUMO

Background: Recent studies increasingly suggest notable changes in both the quantity and types of gut microbiota among individuals suffering from urinary tract stones. However, the causal relationship between GMB and urinary tract stone formation remains elusive, which we aim to further investigate in this research through Mendelian Randomization (MR) analysis. Materials and methods: Single nucleotide polymorphisms (SNPs) associated with the human GMB were selected from MiBioGen International Consortium GWAS dataset. Data on urinary tract stone-related traits and associated SNPs were sourced from the IEU Open GWAS database. To investigate the causal relationships between gut microbiota and urinary tract stones, Mendelian Randomization (MR) was applied using genetic variants as instrumental variables, utilizing a bidirectional two-sample MR framework. This analysis incorporated various statistical techniques such as inverse variance weighting, weighted median analysis, MR-Egger, and the maximum likelihood method. To ensure the reliability of the findings, a range of sensitivity tests were conducted, including Cochran's Q test, the MR-Egger intercept, leave-one-out cross-validation, and examination of funnel plots. Results: The results revealed the causal relationship between the increase in the abundance of 10 microbial taxa, including Genus-Barnesiella (IVW OR = 0.73, 95%CI 0.73-0.89, P = 2.29 × 10-3) and Genus-Flavonifractor (IVW OR = 0.69, 95%CI 0.53-0.91, P = 8.57 × 10-3), and the decreased risk of urinary tract stone formation. Conversely, the development of urinary tract stones was observed to potentially instigate alterations in the abundance of 13 microbial taxa, among which Genus-Ruminococcus torques group was notably affected (IVW OR = 1.07, 95%CI 0.64-0.98, P = 1.86 × 10-3). In this context, Genus-Clostridium sensustricto1 exhibited a bidirectional causal relationship with urinary tract stones, while the remaining significant microbial taxa demonstrated unidirectional causal effects in the two-sample MR analysis. Sensitivity analyses did not identify significant estimates of heterogeneity or pleiotropy. Conclusion: To summarize, the results of this study suggest a likely causative link between gut microbiota and the incidence of urinary tract stones. This insight opens up potential pathways for discovering biomarkers and therapeutic targets in the management and prevention of urolithiasis. However, further in-depth research is warranted to investigate these associations.

6.
Ultrasonics ; 138: 107229, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38113587

RESUMO

The second harmonic Lamb waves have high sensitivity to microstructural defects in materials and are therefore promising for incipient damage detection and monitoring of thin-walled structures. Existing studies have shown that the second harmonic Lamb waves can be cumulative with increasing propagation distance under the internal resonance conditions, which is conducive to nonlinear wave measurements in view of structural health monitoring. However, when propagating in a lossy structure with damping, the cumulative properties of the second harmonic Lamb waves are affected by energy dissipation and thus need to be re-examined. In this paper, a method for predicting the cumulative characteristics of second harmonic Lamb waves in damped plates is proposed. Instead of using material damping parameters which are difficult to obtain in practice, the proposed method relies on the attenuation patterns of Lamb waves at fundamental and double frequencies while taking into account the influence of the wave beam divergence. The proposed methodology is validated by finite element simulations and experiments. The results show that the cumulative second harmonic Lamb waves in the damped plate tend to increase and then decrease, and a "sweet" zone of relatively large amplitude can be predicted using the proposed method. The elucidation of the cumulative characteristics of the second harmonic Lamb waves provides guidance for effective system design for structural damage detection and monitoring applications.

7.
Phys Rev Lett ; 131(13): 136102, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37831989

RESUMO

Transverse spin of surface waves is a universal phenomenon which has recently attracted significant attention in optics and acoustics. It appears in gravity water waves, surface plasmon polaritons, surface acoustic waves, and exhibits remarkable intrinsic spin-momentum locking, which has found useful applications for efficient spin-direction couplers. Here we demonstrate, both theoretically and experimentally, that the transverse spin of surface elastic (Rayleigh) waves has an anomalous sign near the surface, opposite to that in the case of electromagnetic, sound, or water surface waves. This anomalous sign appears due to the hybrid (neither transverse nor longitudinal) nature of elastic surface waves. Furthermore, we show that this sign anomaly can be employed for the selective spin-controlled excitation of symmetric and antisymmetric Lamb modes propagating in opposite directions in an elastic plate. Our results pave the way for spin-controlled manipulation of elastic waves and can be important for a variety of areas, from phononic spin-based devices to seismic waves.

8.
Phys Rev Lett ; 129(27): 275501, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36638293

RESUMO

Distinct from the phononic valley pseudospin, the real physical spin of elastic waves adds a novel tool kit capable of envisaging the valley-spin physics of topological valley phononic crystals from a local viewpoint. Here, we report the observation of local elastic valley spin as well as the hidden elastic spin-valley locking mechanism overlooked before. We demonstrate that the selective one-way routing of valley phonon states along the topological interface can be reversed by imposing the elastic spin metasource at different interface locations with opposite valley-spin correspondence. We unveil the physical mechanism of selective directionality as the elastic spin controlled chiral coupling of valley phonon states, through both analytical theory and experimental measurement of the opposite local elastic spin density at different interface locations for different transport directions. The elastic spin of valley topological edge phonons can be extended to other topological states and offers new tool to explore topological metamaterials.

9.
Nat Commun ; 12(1): 6954, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34845209

RESUMO

Directional routing of one-way classical wave has raised tremendous interests about spin-related phenomena. This sparks specifically the elastic wave study of pseudo-spin in meta-structures to perform robust manipulations. Unlike pseudo-spin in mathematics, the intrinsic spin angular momentum of elastic wave is predicted quite recently which exhibits selective excitation of unidirectional propagation even in conventional solids. However, due to the challenge of building up chiral elastic sources, the experimental observation of intrinsic spin of elastic wave is still missing. Here, we successfully measure the elastic spin in Rayleigh and Lamb modes by adopting elaborately designed chiral meta-sources that excite locally rotating displacement polarization. We observe the unidirectional routing of chiral elastic waves, characterize the different elastic spins along different directions, and demonstrate the spin-momentum locking in broad frequency ranges. We also find the selective one-way Lamb wave carries opposite elastic spin on two plate surfaces in additional to the source chirality.

10.
Ultrasonics ; 103: 106085, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32062179

RESUMO

In this work, the finite element method (FEM) is used to investigate the propagation of laser-generated Rayleigh wave along the material surface at the quarter-arc transition surface under the thermoelastic regime, and to establish the relationship between the circular-arc radius and the time domain characteristics of reflected and transmitted Rayleigh waves. The simulation shows that the amplitude of the reflected Rayleigh wave decreases whereas the amplitude of the transmitted Rayleigh wave increases as the radius increases, which is significantly different from the well-studied interaction of Rayleigh waves with the perpendicular transition surface. By introducing the circular-arc defects which are easily formed in some engineering components during the material surface quenching, we find that the depth gauging of the surface circular-arc defects is more accurate in comparison to the surface rectangular defects based on the arrival time of the transmitted Rayleigh wave. This is further verified by the corresponding experimental results. These foundings are of practical values for detecting the depth of the arc defect quantitatively by the laser ultrasonic technique.

11.
Sci Rep ; 6: 24437, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27075601

RESUMO

In this work, we present a method for the design of gradient index devices for elastic waves in plates. The method allows the design of devices to control the three fundamental modes, despite the fact that their dispersion relation is managed by different elastic constants. It is shown that by means of complex graded phononic crystals and thickness variations it is possible to independently design the three refractive indexes of these waves, allowing therefore their simultaneous control. The effective medium theory required for this purpose is presented, and the method is applied to the design of the Luneburg and Maxwell lenses as well as to the design of a flat gradient index lens. Finally, numerical simulations are used to demonstrate the performance of the method in a broadband frequency region.

12.
Opt Lett ; 40(24): 5814-7, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26670519

RESUMO

We propose a perpendicular elliptical silicon nanohole (PE-SiNH) array for light absorption in thin film silicon solar cells. Our analysis shows that this architecture is capable of increasing the absorption of a thin film silicon solar cell by 11.3% in comparison to that of the optimal circular SiNH array. The process of breaking the mirror symmetries is responsible for the increase of the coupled modes. The PE-SiNH structures show additional near-zero spatial Fourier components compared with the circular SiNH structure, which helps to couple more incident light into slow Bloch modes. The mode interaction between adjacent elliptical nanoholes is in favor of the coupling of the incident light into channeling modes and, therefore, enhances light absorption in the short wavelength region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA