RESUMO
To assess the blending effect of field snails with grass carp muscle, the effects of paramyosin (PM) and actomyosin (AM) with different mixture ratios on the gel properties of the binary blend system were investigated in our work. The purified PM from field snail muscle was about 95 kDa on SDS-PAGE. Its main secondary structure was α-helix, which reached to 97.97 %. When the amount of PM increased in the binary blend system, their rheological indices and gel strength were improved. The water holding capacity (WHC) increased to 86.30 % at a mixture ratio of 2:8. However, the WHC and the area of immobile water (P22) dramatically decreased, and the area of free water (P23) increased when the mixture ratio exceeded 4:6. The low level of PM in binary blend system promoted the formation of a homogenous and dense gel network through non-covalent interactions as observed results of SEM and FTIR. When there were redundant PM molecules, the development of heterostructure via hydrophobic interaction of tail-tail contributed to the reduced gel properties of the binary blend system. These findings provided new insight into the binary blend system of PM and AM with different ratios to change the gel properties of myofibrillar protein.
Assuntos
Actomiosina , Tropomiosina , Animais , Géis/química , Actomiosina/química , Caramujos , Água/químicaRESUMO
Nitrogen dioxide (NO2) detection is of great importance because the emission of NO2 gas profoundly endangers the natural environment and human health. However, a few challenges, including lowering detection limit, improving response/recovery kinetics, and reducing working temperature, should be further addressed before practical applications. Herein, a series of N-doped graphene quantum dot (N-GQD)-modified three-dimensional ordered macroporous (3DOM) In2O3 composites are constructed and their NO2 response properties are studied. The results show that compared to pure 3DOM In2O3, reduced graphene oxide (rGO)/3DOM In2O3, and N-doped graphene sheets (NS)/3DOM In2O3, the N-GQDs/3DOM In2O3 sensing materials exhibit higher NO2 responses with fast response and recovery speed and low working temperature (100 °C). In addition, the detection limit of NO2 response for the optimal N-GQDs/In2O3 sensor is as low as 100 ppb. Upon exposure to CO, CH4, NH3, acetone, ethanol, toluene, and formaldehyde, only very weak responses could be observed, indicating good selectivity for the synthesized material. More attractively, the responses of the optimized N-GQDs/In2O3 sensor exhibit no obviously big fluctuation over 60 days, implying good long-term stability. We suggest that the formation of heterojunctions between 3DOM In2O3 and N-GQDs and the doping N atoms in N-GQDs play crucial roles in improving the NO2 sensing properties.
RESUMO
Diabetic retinopathy is the leading cause of blindness, yet its treatment is very limited. Anti-VEGF drug has been widely applied in ocular disease, but its effects on diabetic retinopathy and the underlying mechanism have remained to be fully explored. To elucidate the role of anti-VEGF treatment, we sought to determine the effects of bevacizumab on diabetic neurovascular changes extending from the 3rd to 9th week with induced diabetes in adult rats. The retinal neurovascular changes included increased expression of VEGF, nNOS, iNOS, eNOS, and NO in the course of diabetes progression. In diabetic rats given bevacizumab injection, the ganglion cell loss and alterations of retinal thickness were ameliorated. In this connection, the immunofluorescence labeling of the above biomarkers was noticeably decreased. Along with this, Western blotting confirmed that bevacizumab treatment was associated with a decrease of VEGF, Flk-1, and cAMP response element binding and protein kinase C protein expression. The present results suggest that bevacizumab treatment in the early stage of the retinopathy may ameliorate the lesions of retinopathy, in which VEGF/Flk-1 signaling has been shown here to play an important role.