Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Circulation ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38726666

RESUMO

BACKGROUND: G protein-coupled receptors play a critical role in atrial fibrillation (AF). Spexin is a novel ligand of galanin receptors (GALRs). In this study, we investigated the regulation of spexin and GALRs on AF and the underlying mechanisms. METHODS: Global spexin knockout (SPX-KO) and cardiomyocyte-specific GALRs knockout (GALR-cKO) mice underwent burst pacing electrical stimulation. Optical mapping was used to determine atrial conduction velocity and action potential duration. Atrial myocyte action potential duration and inward rectifying K+ current (IK1) were recorded using whole-cell patch clamps. Isolated cardiomyocytes were stained with Fluo-3/AM dye, and intracellular Ca2+ handling was examined by CCD camera. A mouse model of AF was established by Ang-II (angiotensin II) infusion. RESULTS: Spexin plasma levels in patients with AF were lower than those in subjects without AF, and knockout of spexin increased AF susceptibility in mice. In the atrium of SPX-KO mice, potassium inwardly rectifying channel subfamily J member 2 (KCNJ2) and sarcolipin (SLN) were upregulated; meanwhile, IK1 current was increased and Ca2+ handling was impaired in isolated atrial myocytes of SPX-KO mice. GALR2-cKO mice, but not GALR1-cKO and GALR3-cKO mice, had a higher incidence of AF, which was associated with higher IK1 current and intracellular Ca2+ overload. The phosphorylation level of CREB (cyclic AMP responsive element binding protein 1) was upregulated in atrial tissues of SPX-KO and GALR2-cKO mice. Chromatin immunoprecipitation confirmed the recruitment of p-CREB to the proximal promoter regions of KCNJ2 and SLN. Finally, spexin treatment suppressed CREB signaling, decreased IK1 current and intracellular Ca2+ overload, which thus reduced the inducibility of AF in Ang-II-infused mice. CONCLUSIONS: Spexin reduces atrial fibrillation susceptibility by inhibiting CREB phosphorylation and thus downregulating KCNJ2 and SLN transcription by GALR2 receptor. The spexin/GALR2/CREB signaling pathway represents a novel therapeutic avenue in the development of agents against atrial fibrillation.

2.
Nat Commun ; 15(1): 3743, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702316

RESUMO

Arteriovenous fistulas (AVFs) are the most common vascular access points for hemodialysis (HD), but they have a high incidence of postoperative dysfunction, mainly due to excessive neointimal hyperplasia (NIH). Our previous studies have revealed a highly conserved LncRNA-LncDACH1 as an important regulator of cardiomyocyte and fibroblast proliferation. Herein, we find that LncDACH1 regulates NIH in AVF in male mice with conditional knockout of smooth muscle cell-specific LncDACH1 and in male mice model of AVF with LncDACH1 overexpression by adeno-associated virus. Mechanistically, silence of LncDACH1 activates p-AKT through promoting the expression of heat shock protein 90 (HSP90) and serine/arginine-rich splicing factor protein kinase 1 (SRPK1). Moreover, LncDACH1 is transcriptionally activated by transcription factor KLF9 that binds directly to the promoter region of the LncDACH1 gene. In this work, during AVF NIH, LncDACH1 is downregulated by KLF9 and promotes NIH through the HSP90/ SRPK1/ AKT signaling axis.


Assuntos
Proteínas de Choque Térmico HSP90 , Hiperplasia , Fatores de Transcrição Kruppel-Like , Miócitos de Músculo Liso , Neointima , Proteínas Proto-Oncogênicas c-akt , RNA Longo não Codificante , Animais , Humanos , Masculino , Camundongos , Fístula Arteriovenosa/metabolismo , Fístula Arteriovenosa/genética , Fístula Arteriovenosa/patologia , Proliferação de Células , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Neointima/patologia , Neointima/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais
3.
Adv Sci (Weinh) ; 11(11): e2305992, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38196272

RESUMO

Cardiomyocyte maturation is the final stage of heart development, and abnormal cardiomyocyte maturation will lead to serious heart diseases. CXXC zinc finger protein 1 (Cfp1), a key epigenetic factor in multi-lineage cell development, remains underexplored in its influence on cardiomyocyte maturation. This study investigates the role and mechanisms of Cfp1 in this context. Cardiomyocyte-specific Cfp1 knockout (Cfp1-cKO) mice died within 4 weeks of birth. Cardiomyocytes derived from Cfp1-cKO mice showed an inhibited maturation phenotype, characterized by structural, metabolic, contractile, and cell cycle abnormalities. In contrast, cardiomyocyte-specific Cfp1 transgenic (Cfp1-TG) mice and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) overexpressing Cfp1 displayed a more mature phenotype. Mechanistically, deficiency of Cfp1 led to a reduction in trimethylation on lysine 4 of histone H3 (H3K4me3) modification, accompanied by the formation of ectopic H3K4me3. Furthermore, Cfp1 deletion decreased the level of H3K4me3 modification in adult genes and increased the level of H3K4me3 modification in fetal genes. Collectively, Cfp1 modulates the expression of genes crucial to cardiomyocyte maturation by regulating histone H3K4me3 modification, thereby intricately influencing the maturation process. This study implicates Cfp1 as an important molecule regulating cardiomyocyte maturation, with its dysfunction strongly linked to cardiac disease.


Assuntos
Histonas , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Camundongos , Histonas/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Transativadores/genética , Transativadores/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 43(11): e468-e489, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37767704

RESUMO

BACKGROUND: Current therapies cannot completely reverse advanced atherosclerosis. High levels of amino acids, induced by Western diet, stimulate mTORC1 (mammalian target of rapamycin complex 1)-autophagy defects in macrophages, accelerating atherosclerotic plaque progression. In addition, autophagy-lysosomal dysfunction contributes to plaque necrotic core enlargement and lipid accumulation. Therefore, it is essential to investigate the novel mechanism and molecules to reverse amino acid-mTORC1-autophagy signaling dysfunction in macrophages of patients with advanced atherosclerosis. METHODS: We observed that Gpr137b-ps (G-protein-coupled receptor 137B, pseudogene) was upregulated in advanced atherosclerotic plaques. The effect of Gpr137b-ps on the progression of atherosclerosis was studied by generating advanced plaques in ApoE-/- mice with cardiac-specific knockout of Gpr137b-ps. Bone marrow-derived macrophages and mouse mononuclear macrophage cell line RAW264.7 cells were subjected to starvation or amino acid stimulation to study amino acid-mTORC1-autophagy signaling. Using both gain- and loss-of-function approaches, we explored the mechanism of Gpr137b-ps-regulated autophagy. RESULTS: Our results demonstrated that Gpr137b-ps deficiency led to enhanced autophagy in macrophages and reduced atherosclerotic lesions, characterized by fewer necrotic cores and less lipid accumulation. Knockdown of Gpr137b-ps increased autophagy and prevented amino acid-induced mTORC1 signaling activation. As the downstream binding protein of Gpr137b-ps, HSC70 (heat shock cognate 70) rescued the impaired autophagy induced by Gpr137b-ps. Furthermore, Gpr137b-ps interfered with the HSC70 binding to G3BP (Ras GTPase-activating protein-binding protein), which tethers the TSC (tuberous sclerosis complex) complex to lysosomes and suppresses mTORC1 signaling. In addition to verifying that the NTF2 (nuclear transport factor 2) domain of G3BP binds to HSC70 by in vitro protein synthesis, we further demonstrated that HSC70 binds to the NTF2 domain of G3BP through its W90-F92 motif by using computational modeling. CONCLUSIONS: These findings reveal that Gpr137b-ps plays an essential role in the regulation of macrophage autophagy, which is crucial for the progression of advanced atherosclerosis. Gpr137b-ps impairs the interaction of HSC70 with G3BP to regulate amino acid-mTORC1-autophagy signaling, and these results provide a new potential therapeutic direction for the treatment of advanced atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , RNA Longo não Codificante , Humanos , Camundongos , Animais , RNA Longo não Codificante/metabolismo , Aterosclerose/patologia , Placa Aterosclerótica/patologia , Macrófagos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Autofagia/fisiologia , Aminoácidos/metabolismo , Lipídeos , Mamíferos/genética
5.
Nat Commun ; 14(1): 4620, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528093

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most common liver disorder with high morbidity and mortality. The current study aims to explore the role of Cullin-associated and neddylation-dissociated protein 1 (CAND1) in the development of NAFLD and the underlying mechanisms. CAND1 is reduced in the liver of NAFLD male patients and high fat diet (HFD)-fed male mice. CAND1 alleviates palmitate (PA) induced lipid accumulation in vitro. Hepatocyte-specific knockout of CAND1 exacerbates HFD-induced liver injury in HFD-fed male mice, while hepatocyte-specific knockin of CAND1 ameliorates these pathological changes. Mechanistically, deficiency of CAND1 enhances the assembly of Cullin1, F-box only protein 42 (FBXO42) and acetyl-CoA acyltransferase 2 (ACAA2) complexes, and thus promotes the ubiquitinated degradation of ACAA2. ACAA2 overexpression abolishes the exacerbated effects of CAND1 deficiency on NAFLD. Additionally, androgen receptor binds to the -187 to -2000 promoter region of CAND1. Collectively, CAND1 mitigates NAFLD by inhibiting Cullin1/FBXO42 mediated ACAA2 degradation.


Assuntos
Proteínas Culina , Hepatopatia Gordurosa não Alcoólica , Masculino , Animais , Camundongos , Proteínas Culina/genética , Proteínas Culina/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Aciltransferases , Fatores de Transcrição/metabolismo , Ubiquitina , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Fígado/metabolismo
6.
Cell Chem Biol ; 30(10): 1248-1260.e4, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37442135

RESUMO

Speckle-type pox virus and zinc finger (POZ) protein (SPOP), a substrate recognition adaptor of cullin-3 (CUL3)/RING-type E3 ligase complex, is investigated for its role in cardiac fibrosis in our study. Cardiac fibroblasts (CFs) activation was achieved with TGF-ß1 (20 ng/mL) and MI mouse model was established by ligation of the left anterior descending coronary, and lentivirus was employed to mediate interference of SPOP expression. SPOP was increased both in fibrotic post-MI mouse hearts and TGF-ß1-treated CFs. The gain-of-function of SPOP promoted myofibroblast transformation in CFs, and exacerbated cardiac fibrosis and cardiac dysfunction in MI mice, while the loss-of-function of SPOP exhibited the opposite effects. Mechanistically, SPOP bound to the receptor of activated protein C kinase 1 (RACK1) and induced its ubiquitination and degradation by recognizing Ser/Thr-rich motifs on RACK1, leading to Smad3-mediated activation of CFs. Forced RACK1 expression canceled the effects of SPOP on cardiac fibrosis. The study reveals therapeutic targets for fibrosis-related cardiac diseases.


Assuntos
Infarto do Miocárdio , Fator de Crescimento Transformador beta1 , Animais , Camundongos , Fibrose , Infarto do Miocárdio/complicações , Infarto do Miocárdio/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptores de Quinase C Ativada , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
7.
Circulation ; 147(23): 1758-1776, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37128899

RESUMO

BACKGROUND: Atrial fibrillation (AF) is a highly prevalent condition that can cause or exacerbate heart failure, is an important risk factor for stroke, and is associated with pronounced morbidity and death. Genes uniquely expressed in the atria are known to be essential for maintaining atrial structure and function. Atrial tissue remodeling contributes to arrhythmia recurrence and maintenance. However, the mechanism underlying atrial remodeling remains poorly understood. This study was designed to investigate whether other uncharacterized atrial specific genes play important roles in atrial physiology and arrhythmogenesis. METHODS: RNA-sequencing analysis was used to identify atrial myocyte specific and angiotensin II-responsive genes. Genetically modified, cardiomyocyte-specific mouse models (knockout and overexpression) were generated. In vivo and in vitro electrophysiological, histology, and biochemical analyses were performed to determine the consequences of CIB2 (calcium and integrin binding family member 2 protein) gain and loss of function in the atrium. RESULTS: Using RNA-sequencing analysis, we identified CIB2 as an atrial-enriched protein that is significantly downregulated in the left atria of patients with AF and mouse models of AF from angiotensin II infusion or pressure overload. Using cardiomyocyte-specific Cib2 knockout (Cib2-/-) and atrial myocyte-specific Cib2-overexpressing mouse models, we found that loss of Cib2 enhances AF occurrence, prolongs AF duration, and correlates with a significant increase in atrial fibrosis under stress. Conversely, Cib2 overexpression mitigates AF occurrence and atrial fibrosis triggered by angiotensin II stress. Mechanistically, we revealed that CIB2 competes with and inhibits CIB1-mediated calcineurin activation, thereby negating stress-induced structural remodeling and AF. CONCLUSIONS: Our data suggest that CIB2 represents a novel endogenous and atrial-enriched regulator that protects against atrial remodeling and AF under stress conditions. Therefore, CIB2 may represent a new potential target for treating AF.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Animais , Camundongos , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Átrios do Coração , Fibrose , RNA/metabolismo
8.
J Proteome Res ; 22(4): 1172-1180, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36924315

RESUMO

The incidence rate of atrial fibrillation (AF) has stayed at a high level in recent years. Despite the intensive efforts to study the pathologic changes of AF, the molecular mechanism of disease development remains unclarified. Microproteins are ribosomally translated gene products from small open reading frames (sORFs) and are found to play crucial biological functions, while remain rare attention and indistinct in AF study. In this work, we recruited 65 AF patients and 65 healthy subjects for microproteomic profiling. By differential analysis and cross-validation between independent datasets, a total of 4 microproteins were identified as significantly different, including 3 annotated ones and 1 novel one. Additionally, we established a diagnostic model with either microproteins or global proteins by machine learning methods and found the model with microproteins achieved comparable and excellent performance as that with global proteins. Our results confirmed the abnormal expression of microproteins in AF and may provide new perspectives on the mechanism study of AF.


Assuntos
Fibrilação Atrial , Humanos , Proteínas/genética , RNA , Micropeptídeos
9.
FASEB J ; 37(3): e22797, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36753405

RESUMO

Cardiac fibrosis is a common pathological manifestation in multiple cardiovascular diseases and often results in myocardial stiffness and cardiac dysfunctions. LncRNA (long noncoding RNA) participates in a number of pathophysiological processes. However, its role in cardiac fibrosis remains unclear. The purpose of this study was to investigate the role and molecular mechanism of MetBil in regulating cardiac fibrosis. Our data showed that METTL3 binding lncRNA (MetBil) was significantly increased both in fibrotic tissue following myocardial infarction (MI) in mice and in cardiac fibroblasts (CFs) exposed to TGF-ß1 (20 ng/mL) or 20% FBS. Overexpression of MetBil augmented collagen deposition, CF proliferation and activation while silencing MetBil exhibited the opposite effects. Importantly, heterozygous knockout of MetBil alleviated cardiac fibrosis and improved cardiac function after MI. RNA pull-down and RNA-binding protein immunoprecipitation assay showed that METTL3 is a direct downstream target of MetBil; consistently, MetBil and METTL3 were co-localized in both the nucleus and cytoplasm of CFs. Interestingly, MetBil regulated METTL3 expression at protein level, but not mRNA level, in ubiquitin-proteasome pathway. Enforced expression of METTL3 canceled the antifibrotic effects of silencing MetBil reflected by increased collagen production, CF proliferation and activation. Most notably, the m6A-modified fibrosis-regulated genes mediated by METTL3 are profoundly involved in the regulation of MetBil in the cardiac fibrosis following MI. Our study reveals that MetBil as a novel regulator of fibrosis promotes cardiac fibrosis via interacting with METTL3 and regulating the expression of the methylated fibrosis-associated genes, providing a new intervening target for fibrosis-associated cardiac diseases.


Assuntos
Cardiopatias , Infarto do Miocárdio , RNA Longo não Codificante , Camundongos , Animais , RNA Longo não Codificante/genética , Infarto do Miocárdio/metabolismo , Fibrose , Metiltransferases/genética , Metiltransferases/metabolismo , Colágeno/genética , Colágeno/metabolismo
10.
Circ Res ; 132(2): 208-222, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36656967

RESUMO

OBJECTIVE: ASPP1 (apoptosis stimulating of p53 protein 1) is critical in regulating cell apoptosis as a cofactor of p53 to promote its transcriptional activity in the nucleus. However, whether cytoplasmic ASPP1 affects p53 nuclear trafficking and its role in cardiac diseases remains unknown. This study aims to explore the mechanism by which ASPP1 modulates p53 nuclear trafficking and the subsequent contribution to cardiac ischemia/reperfusion (I/R) injury. METHODS AND RESULTS: The immunofluorescent staining showed that under normal condition ASPP1 and p53 colocalized in the cytoplasm of neonatal mouse ventricular cardiomyocytes, while they were both upregulated and translocated to the nuclei upon hypoxia/reoxygenation treatment. The nuclear translocation of ASPP1 and p53 was interdependent, as knockdown of either ASPP1 or p53 attenuated nuclear translocation of the other one. Inhibition of importin-ß1 resulted in the cytoplasmic sequestration of both p53 and ASPP1 in neonatal mouse ventricular cardiomyocytes with hypoxia/reoxygenation stimulation. Overexpression of ASPP1 potentiated, whereas knockdown of ASPP1 inhibited the expression of Bax (Bcl2-associated X), PUMA (p53 upregulated modulator of apoptosis), and Noxa, direct apoptosis-associated targets of p53. ASPP1 was also increased in the I/R myocardium. Cardiomyocyte-specific transgenic overexpression of ASPP1 aggravated I/R injury as indicated by increased infarct size and impaired cardiac function. Conversely, knockout of ASPP1 mitigated cardiac I/R injury. The same qualitative data were observed in neonatal mouse ventricular cardiomyocytes exposed to hypoxia/reoxygenation injury. Furthermore, inhibition of p53 significantly blunted the proapoptotic activity and detrimental effects of ASPP1 both in vitro and in vivo. CONCLUSIONS: Binding of ASPP1 to p53 triggers their nuclear cotranslocation via importin-ß1 that eventually exacerbates cardiac I/R injury. The findings imply that interfering the expression of ASPP1 or the interaction between ASPP1 and p53 to block their nuclear trafficking represents an important therapeutic strategy for cardiac I/R injury.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Traumatismo por Reperfusão , Proteína Supressora de Tumor p53 , Animais , Camundongos , Apoptose/fisiologia , Hipóxia/metabolismo , Isquemia/metabolismo , Carioferinas , Miócitos Cardíacos/metabolismo , Traumatismo por Reperfusão/metabolismo , Proteína Supressora de Tumor p53/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
11.
Acta Pharmacol Sin ; 44(5): 999-1013, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36347996

RESUMO

Non-healing diabetic wounds (DW) are a serious clinical problem that remained poorly understood. We recently found that topical application of growth differentiation factor 11 (GDF11) accelerated skin wound healing in both Type 1 DM (T1DM) and genetically engineered Type 2 diabetic db/db (T2DM) mice. In the present study, we elucidated the cellular and molecular mechanisms underlying the action of GDF11 on healing of small skin wound. Single round-shape full-thickness wound of 5-mm diameter with muscle and bone exposed was made on mouse dorsum using a sterile punch biopsy 7 days following the onset of DM. Recombinant human GDF11 (rGDF11, 50 ng/mL, 10 µL) was topically applied onto the wound area twice a day until epidermal closure (maximum 14 days). Digital images of wound were obtained once a day from D0 to D14 post-wounding. We showed that topical application of GDF11 accelerated the healing of full-thickness skin wounds in both type 1 and type 2 diabetic mice, even after GDF8 (a muscle growth factor) had been silenced. At the cellular level, GDF11 significantly facilitated neovascularization to enhance regeneration of skin tissues by stimulating mobilization, migration and homing of endothelial progenitor cells (EPCs) to the wounded area. At the molecular level, GDF11 greatly increased HIF-1ɑ expression to enhance the activities of VEGF and SDF-1ɑ, thereby neovascularization. We found that endogenous GDF11 level was robustly decreased in skin tissue of diabetic wounds. The specific antibody against GDF11 or silence of GDF11 by siRNA in healthy mice mimicked the non-healing property of diabetic wound. Thus, we demonstrate that GDF11 promotes diabetic wound healing via stimulating endothelial progenitor cells mobilization and neovascularization mediated by HIF-1ɑ-VEGF/SDF-1ɑ pathway. Our results support the potential of GDF11 as a therapeutic agent for non-healing DW.


Assuntos
Diabetes Mellitus Experimental , Células Progenitoras Endoteliais , Fatores de Diferenciação de Crescimento , Cicatrização , Animais , Humanos , Camundongos , Proteínas Morfogenéticas Ósseas/metabolismo , Quimiocina CXCL12/efeitos dos fármacos , Quimiocina CXCL12/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/patologia , Fatores de Diferenciação de Crescimento/uso terapêutico , Fatores de Diferenciação de Crescimento/metabolismo , Neovascularização Fisiológica , Fator A de Crescimento do Endotélio Vascular/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico , Subunidade alfa do Fator 1 Induzível por Hipóxia/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
12.
Gene Ther ; 30(1-2): 142-149, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35644811

RESUMO

Dystrophin deficiency due to genetic mutations causes cardiac abnormalities in Duchenne's muscular dystrophy. Dystrophin is also shown to be downregulated in conventional failing hearts. Whether restoration of dystrophin expression possesses any therapeutic potential for conventional heart failure (HF) remains to be examined. HF mouse model was generated by transverse aortic constriction (TAC). In vivo activation of dystrophin transcription was achieved by tail-vein injection of adeno-associated virus 9 carrying CRISPR/dCas system for dystrophin. We found that activation of dystrophin expression in TAC mice significantly reduced the susceptibility to arrhythmia of TAC mice and the mortality rate. We further demonstrated that over-expression of dystrophin increased cardiac conduction of hearts in TAC mice by optical mapping evaluation. Activation of dystrophin expression also increased peak sodium current in isolated ventricular myocytes from hearts of TAC mice as recorded by the patch-clamp technique. Immunoblotting and immunofluorescence showed that increased dystrophin transcription restored the membrane distribution of Nav1.5 in the hearts of TAC mice. In summary, correction of dystrophin downregulation by the CRISPR-dCas9 system reduced the susceptibility to arrhythmia of conventional HF mice through restoring Nav1.5 membrane distribution. This study paved the way to develop a new therapeutic strategy for HF-related ventricular arrhythmia.


Assuntos
Insuficiência Cardíaca , Distrofia Muscular de Duchenne , Camundongos , Animais , Distrofina/genética , Distrofina/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Arritmias Cardíacas/genética , Arritmias Cardíacas/terapia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia
13.
Nucleic Acids Res ; 51(D1): D409-D417, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36099422

RESUMO

Cancer-related epitopes can engage the immune system against tumor cells, thus exploring epitopes derived from non-coding regions is emerging as a fascinating field in cancer immunotherapies. Here, we described a database, IEAtlas (http://bio-bigdata.hrbmu.edu.cn/IEAtlas), which aims to provide and visualize the comprehensive atlas of human leukocyte antigen (HLA)-presented immunogenic epitopes derived from non-coding regions. IEAtlas reanalyzed publicly available mass spectrometry-based HLA immunopeptidome datasets against our integrated benchmarked non-canonical open reading frame information. The current IEAtlas identified 245 870 non-canonical epitopes binding to HLA-I/II allotypes across 15 cancer types and 30 non-cancerous tissues, greatly expanding the cancer immunopeptidome. IEAtlas further evaluates the immunogenicity via several commonly used immunogenic features, including HLA binding affinity, stability and T-cell receptor recognition. In addition, IEAtlas provides the biochemical properties of epitopes as well as the clinical relevance of corresponding genes across major cancer types and normal tissues. Several flexible tools were also developed to aid retrieval and to analyze the epitopes derived from non-coding regions. Overall, IEAtlas will serve as a valuable resource for investigating the immunogenic capacity of non-canonical epitopes and the potential as therapeutic cancer vaccines.


Assuntos
Epitopos , Antígenos HLA , Humanos , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe II/genética , Fases de Leitura Aberta , Vacinas Anticâncer , Atlas como Assunto
14.
Front Pharmacol ; 13: 988408, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313361

RESUMO

Background: Recent clinical trials indicate that sodium-glucose cotransporter 2 (SGLT2) inhibitors improve cardiovascular outcomes in myocardial infarction (MI) patients, but the underlying mechanisms remain unknown. As arrhythmia often occurs during myocardial infarction, it is the main cause of death. Objective: The purpose of this study was to investigate the influence of empagliflozin (EMPA), an SGLT2 inhibitor, on cardiac electrophysiological remodeling and arrhythmia susceptibility of myocardial infarction mice. Methods: ECG was obtained from mice 1 week after MI to determine the QT interval. In an electrophysiological study and optical mapping was performed to evaluate the function of EMPA and underlying mechanisms of post-myocardial-infarction in mice. Results: EMPA treatment significantly reduced the QT interval of MI mice (MI + EMPA 50.24 ms vs. MI 64.68 ms). The membrane potential and intracellular Ca [Cai] were mapped from 13 MI hearts and five normal hearts using an optical mapping technique. A dynamic pacing protocol was used to determine action potential duration and [Cai] at baseline and after EMPA (10 umol/L) infusion. EMPA perfusion did not change the APD80 and CaT80 in normal ventricles while shortening them in an infarct zone, bordering zone, and remote zone of MI hearts at 200 ms, 150 ms, 120 ms, and 100 ms pacing cycle length. The conduction velocity of infarcted ventricles was 0.278 m/s and 0.533 m/s in normal ventricles at baseline (p < 0.05). After EMPA administration, the conduction velocity of infarcted ventricles increased to 0.363 m/s, whereas no significant changes were observed in normal ventricles. The action potential rise time, CaT rise time, and CaT tau time were improved after EMPA perfusion in infarcted ventricles, whereas no significant changes were observed in normal ventricles. EMPA decreases early afterdepolarizations premature ventricular beats, and ventricular fibrillation (VF) in infarcted ventricles. The number of phase singularities (baseline versus EMPA, 6.26 versus 3.25), dominant frequency (20.52 versus 10.675 Hz), and ventricular fibrillation duration (1.072 versus 0.361 s) during ventricular fibrillation in infarcted ventricles were all significantly decreased by EMPA. Conclusion: Treatment with EMPA improved post-MI electrophysiological remodeling and decreased substrate for VF of MI mice. The inhibitors of SGLT2 may be a new class of agents for the prevention of ventricle arrhythmia after chronic MI.

15.
Commun Biol ; 5(1): 716, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851102

RESUMO

Myocardial ischemia/reperfusion (MI/R) injury is a pathological process that seriously affects the health of patients with coronary artery disease. Long non-coding RNAs (lncRNAs) represents a new class of regulators of diverse biological processes and disease conditions, the study aims to discover the pivotal lncRNA in MI/R injury. The microarray screening identifies a down-regulated heart-enriched lncRNA-CIRPIL (Cardiac ischemia reperfusion associated p53 interacting lncRNA, lncCIRPIL) from the hearts of I/R mice. LncCIRPIL inhibits apoptosis of cultured cardiomyocytes exposed to anoxia/reoxygenation (A/R). Cardiac-specific transgenic overexpression of lncCIRPIL alleviates I/R injury in mice, while knockout of lncCIRPIL exacerbates cardiac I/R injury. LncCIRPIL locates in the cytoplasm and physically interacts with p53, which leads to the cytoplasmic sequestration and the acceleration of ubiquitin-mediated degradation of p53 triggered by E3 ligases CHIP, COP1 and MDM2. p53 overexpression abrogates the protective effects of lncCIRPIL. Notably, the human fragment of conserved lncCIRPIL mimics the protective effects of the full-length lncCIRPIL on cultured human AC16 cells. Collectively, lncCIRPIL exerts its cardioprotective action via sequestering p53 in the cytoplasm and facilitating its ubiquitin-mediated degradation. The study highlights a unique mechanism in p53 signal pathway and broadens our understanding of the molecular mechanisms of MI/R injury.


Assuntos
Traumatismo por Reperfusão Miocárdica , RNA Longo não Codificante , Animais , Citoplasma , Humanos , Camundongos , Traumatismo por Reperfusão Miocárdica/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinas/metabolismo
16.
Pharmacol Res ; 182: 106284, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35661710

RESUMO

Pathological cardiac hypertrophy is a process characterized by significant disturbance of protein turnover. Cullin-associated and Neddylation-dissociated 1 (CAND1) acts as a coordinator to modulate substrate protein degradation by promoting the formation of specific cullin-based ubiquitin ligase 3 complex in response to substrate accumulation, which thereby facilitate the maintaining of normal protein homeostasis. Accumulation of calcineurin is critical in the pathogenesis of cardiac hypertrophy and heart failure. However, whether CAND1 titrates the degradation of hypertrophy related protein eg. calcineurin and regulates cardiac hypertrophy remains unknown. Therefore, we aim to explore the role of CAND1 in cardiac hypertrophy and heart failure and the underlying molecular mechanism. Here, we found that the protein level of CAND1 was increased in cardiac tissues from heart failure (HF) patients and TAC mice, whereas the mRNA level did not change. CAND1-KO+ /- aggravated TAC-induced cardiac hypertrophic phenotypes; in contrast, CAND1-Tg attenuated the maladaptive cardiac remodeling. At the molecular level, CAND1 overexpression downregulated, whereas CAND1-KO+ /- or knockdown upregulated calcineurin expression at both in vivo and in vitro conditions. Mechanistically, CAND1 overexpression favored the assembly of Cul1/atrogin1/calcineurin complex and rendered the ubiquitination and degradation of calcineurin. Notably, CAND1 deficiency-induced hypertrophic phenotypes were partially rescued by knockdown of calcineurin, and application of exogenous CAND1 prevented TAC-induced cardiac hypertrophy. Taken together, our findings demonstrate that CAND1 exerts a protective effect against cardiac hypertrophy and heart failure partially by inducing the degradation of calcineurin.


Assuntos
Calcineurina , Cardiomegalia , Proteínas Culina , Insuficiência Cardíaca , Animais , Calcineurina/metabolismo , Cardiomegalia/genética , Proteínas Culina/química , Proteínas Culina/genética , Proteínas Culina/metabolismo , Insuficiência Cardíaca/genética , Humanos , Camundongos , Fatores de Transcrição
17.
Transl Res ; 248: 51-67, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35609783

RESUMO

Cardiac fibrosis is a process characterized by extracellular matrix accumulation leading to myocardial dysfunction. Angiotensin II (Ang II) has been shown to play an important role in the pathogenesis of cardiac fibrosis. However, the underlying mechanisms are not well established. Dysfunction of adipose tissue has been shown to promote remote organ injury, but its role in Ang II-induced cardiac remodeling is still unclear. In this study, we demonstrated that epididymal white adipose tissue (eWAT) promoted Ang II-induced cardiac fibrosis and subsequent cardiac dysfunction in an exosome-dependent manner. Both eWAT removal and administration of an inhibitor of exosome biogenesis strongly attenuated Ang II-induced abnormalities. Moreover, exosomes isolated from Ang II-stimulated adipocytes promoted cardiac fibroblasts (CFs) activity. A mechanistic study identified that the miR-23a-3p level was significantly increased in exosomes derived from Ang II-challenged adipocytes and serum exosomes from Ang II-infused mice. Importantly, tail vein injection of ago-miR-23a-3p caused cardiac fibrosis and dysfunction, while antago-miR-23a-3p inhibited Ang II-induced cardiac fibrosis. Bioinformatics analysis and further validation experiments revealed that RAP1 is a direct downstream target of miR-23a-3p, and overexpression of RAP1 reversed the profibrotic effect of miR-23a-3p. Taken together, these findings elucidated the role of eWAT in Ang II-induced myocardial fibrosis and indicated that adipocyte-derived exosomes mediate pathologic communication between dysfunctional adipose tissue and the heart by transporting miR-23a-3p into CFs, transforming fibroblasts into myofibroblasts and promoting excessive collagen deposition by targeting RAP1. Prevention of abnormal adipocyte exosome production, inhibition of miR-23a-3p biogenesis, and treatment with a miR-23a-3p antagonist are novel strategies for treating cardiac fibrosis.


Assuntos
Cardiomiopatias , Exossomos , MicroRNAs , Tecido Adiposo Branco , Angiotensina II , Animais , Fibrose , Camundongos , Camundongos Endogâmicos C57BL
18.
Circ Res ; 130(5): e3-e17, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35105170

RESUMO

BACKGROUND: Ku70 participates in several pathological processes through mediating repair of DNA double-strand breaks. Our previous study has identified a highly conserved long noncoding RNA cardiac ischemia reperfusion associated Ku70 interacting lncRNA (CIRKIL) that was upregulated in myocardial infarction. The study aims to investigate whether CIRKIL regulates myocardial ischemia/reperfusion (I/R) through binding to Ku70. METHODS: CIRKIL transgenic and knockout mice were subjected to 45-minute ischemia and 24-hour reperfusion to establish myocardial I/R model. RNA pull-down and RNA immunoprecipitation assay were used to detect the interaction between CIRKIL and Ku70. RESULTS: The expression of CIRKIL was increased in I/R myocardium and H2O2-treated cardiomyocytes. Overexpression of CIRKIL increased the expression of γH2A.X, a specific marker of DNA double-strand breaks and aggravated cardiomyocyte apoptosis, whereas knockdown of CIRKIL produced the opposite changes. Transgenic overexpression of CIRKIL aggravated cardiac dysfunction, enlarged infarct area, and worsened cardiomyocyte damage in I/R mice. Knockout of CIRKIL alleviated myocardial I/R injury. Mechanistically, CIRKIL directly bound to Ku70 to subsequently decrease nuclear translocation of Ku70 and impair DNA double-strand breaks repair. Concurrent overexpression of Ku70 mitigated CIRKIL overexpression-induced myocardial I/R injury. Furthermore, knockdown of human CIRKIL significantly suppressed cell damage induced by H2O2 in adult human ventricular cardiomyocytes and human induced pluripotent stem cell-derived cardiomyocytes. CONCLUSIONS: CIRKIL is a detrimental factor in I/R injury acting via regulating nuclear translocation of Ku70 and DNA double-strand breaks repair. Thus, CIRKIL might be considered as a novel molecular target for the treatment of cardiac conditions associated with I/R injury.


Assuntos
Doença da Artéria Coronariana , Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , RNA Longo não Codificante , Animais , Apoptose , Doença da Artéria Coronariana/metabolismo , DNA/metabolismo , Humanos , Peróxido de Hidrogênio/toxicidade , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Knockout , Infarto do Miocárdio/metabolismo , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Reperfusão
19.
Acta Biochim Biophys Sin (Shanghai) ; 54(2): 199-208, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35130614

RESUMO

Methyltransferase-like 3 (Mettl3) is a component of methyltransferase complex that mediates mA modification of RNAs, and participates in multiple biological processes. However, the role of Mettl3 in cardiac electrophysiology remains unknown. This study aims to explore the ventricular arrhythmia susceptibility of Mettl3 mice and the underlying mechanisms. Mice were anesthetized with 2% avertin (0.1 mL/ body weight) for echocardiography and programmed electrical pacing. Whole-cell patch clamp technique was used to examine the electrophysiological property of cardiomyocytes. The expression of Cav1.2 was determined by qRT-PCR and western blot analysis. The mA medication of mRNA was examined by MeRIP-Seq and MeRIP-qPCR. No differences are found in the morphology and function of the hearts between Mettl3 mice and wild-type (WT) controls. The QT and QTc intervals of Mettl3 mice are significantly longer. High-frequency electrical stimulation showed that heterozygous knockout of Mettl3 increases ventricular arrhythmia susceptibility. The whole-cell patch-clamp recordings showed that the APD is prolonged in Mettl3 ventricular myocytes and more EADs were observed. The density of is substantially increased in ventricular myocytes of Mettl3 mice. The pore-forming subunit of L-type calcium channel Cav1.2 is upregulated in Mettl3 mice, while the mRNA of its coding gene does not change. MeRIP-Seq and MeRIP-qPCR showed that the mA methylation of mRNA is decreased in cultured Mettl3-knockdown cardiomyocytes and Mettl3 hearts. Collectively, deficiency of Mettl3 increases ventricular arrhythmia susceptibility due to the upregulation of Cav1.2 by reducing mA modification onmRNA in mice. This study highlights the role of mA modification in the regulation of cardiac electrophysiology.


Assuntos
Arritmias Cardíacas , Canais de Cálcio Tipo L/metabolismo , Miócitos Cardíacos , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Ativação Transcricional , Regulação para Cima
20.
Sci China Life Sci ; 65(6): 1198-1212, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34668131

RESUMO

Diabetic cardiomyopathy (DCM) is a common complication in diabetic patients. The molecular mechanisms of DCM remain to be fully elucidated. The intronic long noncoding RNA of DACH1 (lncDACH1) has been demonstrated to be closely associated with heart failure and cardiac regeneration. In this study, we investigated the role of lncDACH1 in DCM and the underlying molecular mechanisms. The expression of lncDACH1 was increased in DCM hearts and in high glucose-treated cardiomyocytes. Knockout of lncDACH1 reduced mitochondrial oxidative stress, cell apoptosis, cardiac fibrosis and hypertrophy, and improved cardiac function in DCM mice. Overexpression of lncDACH1 exacerbated mitochondria-derived reactive oxygen species (ROS) level and apoptosis, decreased activity of manganese superoxide dismutase (Mn-SOD); while silencing of lncDACH1 attenuated ROS production, mitochondrial dysfunction, cell apoptosis, and increased the activity of Mn-SOD in cardiomyocytes treated with high glucose. LncDACH1 directly bound to sirtuin3 (SIRT3) and facilitated its degradation by ubiquitination, therefore promoting mitochondrial oxidative injury and cell apoptosis in mouse hearts. In addition, SIRT3 silencing abrogated the protective effects of lncDACH1 deficiency in cardiomyocytes. In summary, lncDACH1 aggravates DCM by promoting mitochondrial oxidative stress and cell apoptosis via increasing ubiquitination-mediated SIRT3 degradation in mouse hearts. Inhibition of lncDACH1 represents a novel therapeutic strategy for the intervention of diabetic cardiomyopathy.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , RNA Longo não Codificante , Sirtuína 3 , Animais , Apoptose/genética , Diabetes Mellitus/metabolismo , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Glucose/farmacologia , Humanos , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , RNA Longo não Codificante/genética , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA