RESUMO
Understanding soil organic matter (SOM) dynamics is essential to employ management that contribute to the improvement of soil quality (SQ). The aim of this study was to characterize the SOM and evaluate the emission of mineralizable C (C-CO2) in different management systems. The soil was collected in five managed areas: exposed soil (ES), conventional tillage system (CTS), no-tillage system (NTS), permanent pasture (PP) and sugarcane (SC), in addition to a forest area (NF), in the layers of 0-5, 5-10, and 10-20 cm. Total organic carbon (TOC), physical-granulometric fractionation of SOM were performed, determining the contents and stocks of particulate organic matter (C-POM; StockPOM) and mineral organic matter (C-MOM; StockMOM), in addition to calculating SQ indices. In addition to C-CO2 emissions from the soil. The areas of PP and NTS presented the highest levels of TOC in the surface layer. The highest levels of C-MOM and StockMOM were observed in the PP area, besides higher CSI (carbon stock index), reaching 1.67 in the 10-20 cm layer. The areas of PP and SC were similar to the NF in all layers regarding CMI (carbon management index). In CTS, there were higher peaks in emissions and accumulation of C-CO2. It is evident that the improvements in the SQ in the areas of PP, SC, and NTS caused mainly by the deposition of plant material and by soil revolving not being performed. In the CTS, high emission peaks of C-CO2 show that the lack of conservation management practices contributes to the emission of greenhouse gases.
Assuntos
Saccharum , Solo , Agricultura , Carbono/análise , Dióxido de Carbono/análise , Monitoramento Ambiental , Indicadores de Qualidade em Assistência à SaúdeRESUMO
In recent years, the Cerrado biome in Brazil (Brazilian savannah) has faced severe environmental problems due to abrupt changes in land use/cover (LUC), causing increased soil loss, sediment yield and water turbidity. Thus, this study aimed to evaluate the impacts of soil loss and sediment delivery ratio (SDR) over the last 30 years to simulate future scenarios of soil losses from 2050 to 2100 and to investigate an episode of sediment delivery that occurred in the Rio da Prata Basin (RPB) in 2018. In this study, the following were used: an estimation of soil losses for 1986, 1999, 2007 and 2016 using the Revised Universal Soil Loss Equation (RUSLE), an estimation of SDR, sediment export and sediment deposition using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, an association of RUSLE factor C to LUC data for 2050 and 2100 based on the CA-Markov hybrid model, and an estimation of future soil erosion scenarios for 2050 and 2100. The results show that over the last 30 years (1986-2016), there has been a reduction in the areas of highly intense and severe degrees. Future soil erosion scenarios (2050-2100) showed a 13.84% increase in areas of soil loss >10 Mg ha-1 year-1. The results highlighted the importance of assessing the impacts of LUC changes on soil erosion and the export of sediments to agricultural watersheds in the RPB, one of the best ecotourism destinations in Brazil. In addition, the increase in soil loss in the region intensified sediment yield events and increased water turbidity. Furthermore, riparian vegetation, although preserved, was not able to protect the watercourse, showing that it is essential to adopt the best management practices in the agricultural production areas of the basin, especially where ramps are extensive or the slope is greater than 2%, to reduce the runoff velocity and control the movement of sediments on the surface towards the drainage canals. The results of this study are useful for drawing up a soil and water conservation plan for the sustainable production of agriculture and maintenance of ecosystem services in the region.
Assuntos
Conservação dos Recursos Naturais , Ecossistema , Brasil , Monitoramento Ambiental/métodos , Solo , Erosão do SoloRESUMO
In the last 30 years, the growth of the agriculture and livestock industries in the Cerrado biome has caused severe changes in land use and land cover (LULC), and areas previously occupied by native vegetation are changing to agricultural monocultures (e.g., soybean or corn) and/or pastures. Thus, the objective of this study was to analyze the LULC changes for the years 1986, 1999, 2007, and 2016 based on Landsat time series and object-based image analysis (OBIA) for the Prata River Basin. Twelve LULC classes were mapped: riparian forest, cerrado, swampy grasslands, wetlands, semideciduous forest, pasture, agriculture, fallow agricultural land, barren land, eucalyptus, water bodies, and burnt area. The classifications presented results with an overall accuracy of more than 93% and a kappa coefficient of 0.92. In 2007, the pasture class had the highest increase in area (48.5%), with a total area of 118.32 km2 of Cerrado biome vegetation converted to pasture, and the classes banhado, riparian forest, swampy grasslands, and cerrado had the greatest reductions in area (41.58%, 29.67%, 25.44%, and 21.63%, respectively). More precisely, the wetlands class underwent the greatest decrease under the advancement of pasture in the studied period (- 36.2%). These changes are due to factors favorable to agropastoral practices, such as a flat relief and soil with good agricultural suitability. Graphical abstract.