Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Br J Haematol ; 203(4): 614-624, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37699574

RESUMO

Expression of myeloperoxidase (MPO), a key inflammatory enzyme restricted to myeloid cells, is negatively associated with the development of solid tumours. Activated myeloid cell populations are increased in multiple myeloma (MM); however, the functional consequences of myeloid-derived MPO within the myeloma microenvironment are unknown. Here, the role of MPO in MM pathogenesis was investigated, and the capacity for pharmacological inhibition of MPO to impede MM progression was evaluated. In the 5TGM1-KaLwRij mouse model of myeloma, the early stages of tumour development were associated with an increase in CD11b+ myeloid cell populations and an increase in Mpo expression within the bone marrow (BM). Interestingly, MM tumour cell homing was increased towards sites of elevated myeloid cell numbers and MPO activity within the BM. Mechanistically, MPO induced the expression of key MM growth factors, resulting in tumour cell proliferation and suppressed cytotoxic T-cell activity. Notably, tumour growth studies in mice treated with a small-molecule irreversible inhibitor of MPO (4-ABAH) demonstrated a significant reduction in overall MM tumour burden. Taken together, our data demonstrate that MPO contributes to MM tumour growth, and that MPO-specific inhibitors may provide a new therapeutic strategy to limit MM disease progression.


Assuntos
Mieloma Múltiplo , Peroxidase , Microambiente Tumoral , Animais , Camundongos , Medula Óssea/patologia , Modelos Animais de Doenças , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Células Mieloides/patologia , Peroxidase/metabolismo
2.
Bone Rep ; 14: 101096, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34136591

RESUMO

Bone defects arising from fractures or disease represent a significant problem for surgeons to manage and are a substantial economic burden on the healthcare economy. Recent advances in the development of biomaterial substitutes provides an attractive alternative to the current "gold standard" autologous bone grafting. Despite on-going research, we are yet to identify cost effective biocompatible, osteo-inductive factors that stimulate controlled, accelerated bone regeneration.We have recently reported that enzymes with peroxidase activity possess previously unrecognised roles in extracellular matrix biosynthesis, angiogenesis and osteoclastogenesis, which are essential processes in bone remodelling and repair. Here, we report for the first time, that plant-derived soybean peroxidase (SBP) possesses pro-osteogenic ability by promoting collagen I biosynthesis and matrix mineralization of human osteoblasts in vitro. Mechanistically, SBP regulates osteogenic genes responsible for inflammation, extracellular matrix remodelling and ossification, which are necessary for normal bone healing. Furthermore, SBP was shown to have osteo-inductive properties, that when combined with commercially available biphasic calcium phosphate (BCP) granules can accelerate bone repair in a critical size long bone defect ovine model. Micro-CT analysis showed that SBP when combined with commercially available biphasic calcium phosphate (BCP) granules significantly increased bone formation within the defects as early as 4 weeks compared to BCP alone. Histomorphometric assessment demonstrated accelerated bone formation prominent at the defect margins and surrounding individual BCP granules, with evidence of intramembranous ossification. These results highlight the capacity of SBP to be an effective regulator of osteoblastic function and may be beneficial as a new and cost effective osteo-inductive agent to accelerate repair of large bone defects.

3.
Bone ; 93: 12-21, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27622886

RESUMO

The EphB receptor tyrosine kinase family and their ephrinB ligands have been implicated as mediators of skeletal development and bone homeostasis in humans, where mutations in ephrinB1 contribute to frontonasal dysplasia and coronal craniosynostosis. In mouse models, ephrinB1 has been shown to be a critical factor mediating osteoblast function. The present study examined the functional importance of ephrinB1 during endochondral ossification using the Cre recombination system with targeted deletion of ephrinB1 (EfnB1fl/fl) in osteogenic progenitor cells, under the control of the osterix (Osx:Cre) promoter. The Osx:EfnB1-/- mice displayed aberrant bone growth during embryonic and postnatal skeletal development up to 4weeks of age, when compared to the Osx:Cre controls. Furthermore, compared to the Osx:Cre control mice, the Osx:EfnB1-/- mice exhibited significantly weaker and less rigid bones, with a reduction in trabecular/ cortical bone formation, reduced trabecular architecture and a reduction in the size of the growth plates at the distal end of the femora from newborn through to 4weeks of age. The aberrant bone formation correlated with increased numbers of tartrate resistant acid phosphatase positive osteoclasts and decreased numbers of bone lining osteoblasts in 4week old Osx:EfnB1-/- mice, compared to Osx:Cre control mice. Taken together, these observations demonstrate the importance of ephrinB1 signalling between cells of the skeleton required for endochondral ossification.


Assuntos
Osso e Ossos/fisiologia , Condrogênese , Efrina-B1/deficiência , Osteogênese , Células-Tronco/metabolismo , Animais , Osso e Ossos/embriologia , Osso Esponjoso/crescimento & desenvolvimento , Osso Cortical/crescimento & desenvolvimento , Desenvolvimento Embrionário , Efrina-B1/metabolismo , Feminino , Lâmina de Crescimento/crescimento & desenvolvimento , Masculino , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Regiões Promotoras Genéticas , Fator de Transcrição Sp7/genética , Fator de Transcrição Sp7/metabolismo , Análise de Sobrevida
4.
Stem Cells ; 33(9): 2838-49, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26033476

RESUMO

The tyrosine kinase receptor, EphB4, mediates cross-talk between stromal and hematopoietic populations during bone remodeling, fracture repair and arthritis, through its interactions with the ligand, ephrin-B2. This study demonstrated that transgenic EphB4 mice (EphB4 Tg), over-expressing EphB4 under the control of collagen type-1 promoter, exhibited higher frequencies of osteogenic cells and hematopoietic stem/progenitor cells (HSC), correlating with a higher frequency of long-term culture-initiating cells (LTC-IC), compared with wild type (WT) mice. EphB4 Tg stromal feeder layers displayed a greater capacity to support LTC-IC in vitro, where blocking EphB4/ephrin-B2 interactions decreased LTC-IC output. Similarly, short hairpin RNA-mediated EphB4 knockdown in human bone marrow stromal cells reduced their ability to support high ephrin-B2 expressing CD34(+) HSC in LTC-IC cultures. Notably, irradiated EphB4 Tg mouse recipients displayed enhanced bone marrow reconstitution capacity and enhanced homing efficiency of transplanted donor hematopoietic stem/progenitor cells relative to WT controls. Studies examining the expression of hematopoietic supportive factors produced by stromal cells indicated that CXCL12, Angiopoietin-1, IL-6, FLT-3 ligand, and osteopontin expression were more highly expressed in EphB4 Tg stromal cells compared with WT controls. These findings indicate that EphB4 facilitates stromal-mediated support of hematopoiesis, and constitute a novel component of the HSC niche.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Receptor EphB4/biossíntese , Sequência de Aminoácidos , Animais , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Receptor EphB4/genética , Células Estromais/metabolismo
5.
J Bone Miner Res ; 28(4): 926-35, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23165754

RESUMO

Previous reports have identified a role for the tyrosine kinase receptor EphB4 and its ligand, ephrinB2, as potential mediators of both bone formation by osteoblasts and bone resorption by osteoclasts. In the present study, we examined the role of EphB4 during bone repair after traumatic injury. We performed femoral fractures with internal fixation in transgenic mice that overexpress EphB4 under the collagen type 1 promoter (Col1-EphB4) and investigated the bone repair process up to 12 weeks postfracture. The data indicated that Col1-EphB4 mice exhibited stiffer and stronger bones after fracture compared with wild-type mice. The fractured bones of Col1-EphB4 transgenic mice displayed significantly greater tissue and bone volume 2 weeks postfracture compared with that of wild-type mice. These findings correlated with increased chondrogenesis and mineral formation within the callus site at 2 weeks postfracture, as demonstrated by increased safranin O and von Kossa staining, respectively. Interestingly, Col1-EphB4 mice were found to possess significantly greater numbers of clonogenic mesenchymal stromal progenitor cells (CFU-F), with an increased capacity to form mineralized nodules in vitro under osteogenic conditions, when compared with those of the wild-type control mice. Furthermore, Col1-EphB4 mice had significantly lower numbers of TRAP-positive multinucleated osteoclasts within the callus site. Taken together, these observations suggest that EphB4 promotes endochondral ossification while inhibiting osteoclast development during callus formation and may represent a novel drug target for the repair of fractured bones.


Assuntos
Remodelação Óssea , Consolidação da Fratura , Fraturas Ósseas/patologia , Fraturas Ósseas/fisiopatologia , Osteogênese , Receptor EphB4/metabolismo , Animais , Fenômenos Biomecânicos , Calo Ósseo/patologia , Calo Ósseo/fisiopatologia , Contagem de Células , Colágeno Tipo I , Feminino , Fraturas Ósseas/diagnóstico por imagem , Regulação da Expressão Gênica , Masculino , Camundongos Transgênicos , Minerais/metabolismo , Receptor EphB4/genética , Células-Tronco/metabolismo , Microtomografia por Raio-X
6.
Bone ; 48(3): 533-42, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21056708

RESUMO

Bone marrow derived mesenchymal stem/stromal cells (MSC) contribute to skeletal tissue formation and the regulation of haematopoiesis. The Eph/ephrin family of receptor tyrosine kinases is potentially important in the maintenance of the stem cell niche within neural, intestinal and dental tissues and has recently been shown to play a role in regulating bone homeostasis. However, the contribution of EphB/ephrin-B molecules in human MSC function remains to be determined. In the present study, EphB and ephrin-B molecules were expressed by ex vivo expanded human MSC populations and within human bone marrow trephine samples. To elucidate the contribution of EphB/ephrin-B molecules in MSC recruitment, we performed functional spreading and migration assays and showed that reverse ephrin-B signalling inhibited MSC attachment and spreading by activating Src-, PI3Kinase- and JNK-dependent signalling pathways. In contrast, forward EphB2 signalling promoted MSC migration by activating the Src kinase- and Abl-dependent signalling pathways. Furthermore, activation of ephrin-B1 and/or ephrin-B2 molecules expressed by MSC was found to increase osteogenic differentiation, while ephrin-B1 activation promoted chondrogenic differentiation. These observations suggest that EphB/ephrin-B interactions may mediate the recruitment, migration and differentiation of MSC during bone repair.


Assuntos
Diferenciação Celular , Movimento Celular , Condrogênese , Efrinas/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Receptores da Família Eph/metabolismo , Adesão Celular , Diferenciação Celular/genética , Linhagem Celular , Movimento Celular/genética , Condrogênese/genética , Efrinas/genética , Regulação da Expressão Gênica , Humanos , Ligantes , Osteogênese/genética , Ligação Proteica , Receptores da Família Eph/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA