Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 15(3): 510-518, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27068477

RESUMO

The conserved Bora protein is a Plk1 activator, essential for checkpoint recovery after DNA damage in human cells. Here, we show that Bora interacts with Cyclin B and is phosphorylated by Cyclin B/Cdk1 at several sites. The first 225 amino acids of Bora, which contain two Cyclin binding sites and three conserved phosphorylated residues, are sufficient to promote Plk1 phosphorylation by Aurora A in vitro. Mutating the Cyclin binding sites or the three conserved phosphorylation sites abrogates the ability of the N terminus of Bora to promote Plk1 activation. In human cells, Bora-carrying mutations of the three conserved phosphorylation sites cannot sustain mitotic entry after DNA damage. In C. elegans embryos, mutation of the three conserved phosphorylation sites in SPAT-1, the Bora ortholog, results in a severe mitotic entry delay. Our results reveal a crucial and conserved role of phosphorylation of the N terminus of Bora for Plk1 activation and mitotic entry.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Animais , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/química , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/química , Sequência Conservada , Ciclina B/metabolismo , Dano ao DNA , Embrião não Mamífero/citologia , Ativação Enzimática , Células HeLa , Humanos , Mitose , Fosforilação , Quinase 1 Polo-Like
2.
Cell Cycle ; 14(15): 2394-8, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26038951

RESUMO

Mitosis is orchestrated by several protein kinases including Cdks, Plks and Aurora kinases. Despite considerable progress toward understanding the individual function of these protein kinases, how their activity is coordinated in space and time during mitosis is less well understood. In a recent article published in the Journal of Cell Biology, we show that CDK-1 regulates PLK-1 activity during mitosis in C. elegans embryos through multisite phosphorylation of the PLK-1 activator SPAT-1 (Aurora Borealis, Bora in human). SPAT-1 variants mutated on CDK-1 phosphorylation sites results in severe delays in mitotic entry, mimicking embryos lacking spat-1 or plk-1 function. We further show that SPAT-1 phosphorylation by CDK-1 promotes its binding to PLK-1 and stimulates PLK-1 phosphorylation on its activator T-loop by Aurora A kinase in vitro. Likewise, we find that phosphorylation of Bora by Cdk1 promotes phosphorylation of human Plk1 by Aurora A suggesting that this mechanism is conserved in humans. These results indicate that Cdk1 regulates Plk1 by boosting its kinase activity. Here we discuss these recent findings and open questions regarding the regulation of Plk1/PLK-1 by Cdk1/CDK-1 and Bora/SPAT-1.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/metabolismo , Mitose/genética , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Humanos , Fosforilação , Ligação Proteica/genética , Estrutura Terciária de Proteína
3.
J Cell Biol ; 208(6): 661-9, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25753036

RESUMO

The molecular mechanisms governing mitotic entry during animal development are incompletely understood. Here, we show that the mitotic kinase CDK-1 phosphorylates Suppressor of Par-Two 1 (SPAT-1)/Bora to regulate its interaction with PLK-1 and to trigger mitotic entry in early Caenorhabditis elegans embryos. Embryos expressing a SPAT-1 version that is nonphosphorylatable by CDK-1 and that is defective in PLK-1 binding in vitro present delays in mitotic entry, mimicking embryos lacking SPAT-1 or PLK-1 functions. We further show that phospho-SPAT-1 activates PLK-1 by triggering phosphorylation on its activator T loop in vitro by Aurora A. Likewise, we show that phosphorylation of human Bora by Cdk1 promotes phosphorylation of human Plk1 by Aurora A, suggesting that this mechanism is conserved in humans. Our results suggest that CDK-1 activates PLK-1 via SPAT-1 phosphorylation to promote entry into mitosis. We propose the existence of a positive feedback loop that connects Cdk1 and Plk1 activation to ensure a robust control of mitotic entry and cell division timing.


Assuntos
Proteína Quinase CDC2/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Animais , Aurora Quinase A/metabolismo , Caenorhabditis elegans/enzimologia , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Ativação Enzimática , Humanos , Larva/citologia , Larva/enzimologia , Mitose , Dados de Sequência Molecular , Fosforilação , Processamento de Proteína Pós-Traducional , Células Sf9 , Spodoptera
4.
Trends Cell Biol ; 21(11): 672-80, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21930382

RESUMO

Decisions of when and where to divide are crucial for cell survival and fate, and for tissue organization and homeostasis. The temporal coordination of mitotic events during cell division is essential to ensure that each daughter cell receives one copy of the genome. The spatial coordination of these events is also crucial because the cytokinetic furrow must be aligned with the axis of chromosome segregation and, in asymmetrically dividing cells, the polarity axis. Several recent papers describe how cell shape and polarity are coordinated with cell division in single cells and tissues and begin to unravel the underlying molecular mechanisms, revealing common principles and molecular players. Here, we discuss how cells regulate the spatial and temporal coordination of cell polarity with cell division.


Assuntos
Divisão Celular , Polaridade Celular , Animais , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Forma Celular , Humanos , Leveduras/citologia , Leveduras/fisiologia
5.
Development ; 137(19): 3315-25, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20823068

RESUMO

During asymmetric cell division, cell polarity and cell cycle progression are tightly coordinated, yet mechanisms controlling both these events are poorly understood. Here we show that the Bora homologue SPAT-1 regulates both PAR polarity and cell cycle progression in C. elegans embryos. We find that, similarly to mammalian cells, SPAT-1 acts with PLK-1 and not with the mitotic kinase Aurora A (AIR-1), as shown in Drosophila. SPAT-1 binds to PLK-1, and depletion of SPAT-1 or PLK-1 leads to similar cell division defects in early embryos, which differ from the defects caused by depletion of AIR-1. Additionally, SPAT-1 and PLK-1 depletion causes impaired polarity with abnormal length of the anterior and posterior PAR domains, and partial plk-1(RNAi) or spat-1(RNAi), but not air-1(RNAi), can rescue the lethality of a par-2 mutant. SPAT-1 is enriched in posterior cells, and this enrichment depends on PAR polarity and PLK-1. Taken together, our data suggest a model in which SPAT-1 promotes the activity of PLK-1 to regulate both cell polarity and cell cycle timing during asymmetric cell division, providing a link between these two processes.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Polaridade Celular , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Interferência de RNA , Quinase 1 Polo-Like
6.
Dev Cell ; 15(2): 198-208, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18694560

RESUMO

Spindle positioning is an essential feature of asymmetric cell division. The conserved PAR proteins together with heterotrimeric G proteins control spindle positioning in animal cells, but how these are linked is not known. In C. elegans, PAR protein activity leads to asymmetric spindle placement through cortical asymmetry of Galpha regulators GPR-1/2. Here, we establish that the casein kinase 1 gamma CSNK-1 and a PIP(2) synthesis enzyme (PPK-1) transduce PAR polarity to asymmetric Galpha regulation. PPK-1 is posteriorly enriched in the one-celled embryo through PAR and CSNK-1 activities. Loss of CSNK-1 causes uniformly high PPK-1 levels, high symmetric cortical levels of GPR-1/2 and LIN-5, and increased spindle pulling forces. In contrast, knockdown of ppk-1 leads to low GPR-1/2 levels and decreased spindle forces. Furthermore, loss of CSNK-1 leads to increased levels of PIP(2). We propose that asymmetric generation of PIP(2) by PPK-1 directs the posterior enrichment of GPR-1/2 and LIN-5, leading to posterior spindle displacement.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Caseína Quinase I/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático/enzimologia , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Núcleo Celular/enzimologia , Embrião não Mamífero/citologia , Embrião não Mamífero/enzimologia , Modelos Biológicos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Transporte Proteico , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA