Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1398, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36914640

RESUMO

Huntington's disease (HD) is a progressive, neurodegenerative disease caused by a CAG triplet expansion in huntingtin. Although corticostriatal dysfunction has long been implicated in HD, the determinants and pathway specificity of this pathophysiology are not fully understood. Here, using a male zQ175+/- knock-in mouse model of HD we carry out optogenetic interrogation of intratelencephalic and pyramidal tract synapses with principal striatal spiny projection neurons (SPNs). These studies reveal that the connectivity of intratelencephalic, but not pyramidal tract, neurons with direct and indirect pathway SPNs increased in early symptomatic zQ175+/- HD mice. This enhancement was attributable to reduced pre-synaptic inhibitory control of intratelencephalic terminals by striatal cholinergic interneurons. Lowering mutant huntingtin selectively in striatal cholinergic interneurons with a virally-delivered zinc finger repressor protein normalized striatal acetylcholine release and intratelencephalic functional connectivity, revealing a node in the network underlying corticostriatal pathophysiology in a HD mouse model.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Camundongos , Masculino , Animais , Doença de Huntington/metabolismo , Doenças Neurodegenerativas/metabolismo , Corpo Estriado/metabolismo , Neostriado/metabolismo , Colinérgicos/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
2.
Eur J Neurosci ; 47(10): 1148-1158, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28677242

RESUMO

Giant, aspiny cholinergic interneurons (ChIs) have long been known to be key nodes in the striatal circuitry controlling goal-directed actions and habits. In recent years, new experimental approaches, like optogenetics and monosynaptic rabies virus mapping, have expanded our understanding of how ChIs contribute to the striatal activity underlying action selection and the interplay of dopaminergic and cholinergic signaling. These approaches also have begun to reveal how ChI function is distorted in disease states affecting the basal ganglia, like Parkinson's disease (PD). This review gives a brief overview of our current understanding of the functional role played by ChIs in striatal physiology and how this changes in PD. The translational implications of these discoveries, as well as the gaps that remain to be bridged, are discussed as well.


Assuntos
Neurônios Colinérgicos/fisiologia , Corpo Estriado/fisiopatologia , Interneurônios/fisiologia , Doença de Parkinson/fisiopatologia , Animais , Corpo Estriado/metabolismo , Humanos , Doença de Parkinson/metabolismo
3.
Neuron ; 96(6): 1358-1372.e4, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29268098

RESUMO

Cholinergic regulation of dopaminergic inputs into the striatum is critical for normal basal ganglia (BG) function. This regulation of BG function is thought to be primarily mediated by acetylcholine released from cholinergic interneurons (ChIs) acting locally in the striatum. We now report a combination of pharmacological, electrophysiological, optogenetic, chemogenetic, and functional magnetic resonance imaging studies suggesting extra-striatal cholinergic projections from the pedunculopontine nucleus to the substantia nigra pars reticulata (SNr) act on muscarinic acetylcholine receptor subtype 4 (M4) to oppose cAMP-dependent dopamine receptor subtype 1 (D1) signaling in presynaptic terminals of direct pathway striatal spiny projections neurons. This induces a tonic inhibition of transmission at direct pathway synapses and D1-mediated activation of motor activity. These studies provide important new insights into the unique role of M4 in regulating BG function and challenge the prevailing hypothesis of the centrality of striatal ChIs in opposing dopamine regulation of BG output.


Assuntos
Gânglios da Base/citologia , Neurônios Colinérgicos/fisiologia , Dopamina/metabolismo , Parte Reticular da Substância Negra/fisiologia , Receptor Muscarínico M4/metabolismo , Acetilcolina/metabolismo , Animais , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/fisiologia , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Colina O-Acetiltransferase/metabolismo , Colinérgicos/farmacologia , Neurônios Colinérgicos/efeitos dos fármacos , Dopamina/farmacologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/genética , Locomoção/efeitos dos fármacos , Locomoção/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurotransmissores/farmacologia , Oxigênio/sangue , Parte Reticular da Substância Negra/citologia , Parte Reticular da Substância Negra/diagnóstico por imagem , Núcleo Tegmental Pedunculopontino/citologia , Receptor Muscarínico M4/genética , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
4.
Proc Natl Acad Sci U S A ; 112(45): 14078-83, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26508634

RESUMO

Mutations that lead to Huntington's disease (HD) result in increased transmission at glutamatergic corticostriatal synapses at early presymptomatic stages that have been postulated to set the stage for pathological changes and symptoms that are observed at later ages. Based on this, pharmacological interventions that reverse excessive corticostriatal transmission may provide a novel approach for reducing early physiological changes and motor symptoms observed in HD. We report that activation of the M4 subtype of muscarinic acetylcholine receptor reduces transmission at corticostriatal synapses and that this effect is dramatically enhanced in presymptomatic YAC128 HD and BACHD relative to wild-type mice. Furthermore, chronic administration of a novel highly selective M4 positive allosteric modulator (PAM) beginning at presymptomatic ages improves motor and synaptic deficits in 5-mo-old YAC128 mice. These data raise the exciting possibility that selective M4 PAMs could provide a therapeutic strategy for the treatment of HD.


Assuntos
Regulação Alostérica/fisiologia , Ácido Glutâmico/metabolismo , Doença de Huntington/tratamento farmacológico , Receptor Muscarínico M4/fisiologia , Transmissão Sináptica/fisiologia , Animais , Encéfalo/metabolismo , Fluorescência , Doença de Huntington/fisiopatologia , Imuno-Histoquímica , Camundongos , Camundongos Mutantes , Piridazinas/farmacologia , Piridazinas/uso terapêutico , Teste de Desempenho do Rota-Rod , Transmissão Sináptica/efeitos dos fármacos , Tiofenos/farmacologia , Tiofenos/uso terapêutico
5.
ACS Chem Neurosci ; 5(4): 318-24, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24528004

RESUMO

The striatum is the main input station of the basal ganglia and is extensively involved in the modulation of motivated behavior. The information conveyed to this subcortical structure through glutamatergic projections from the cerebral cortex and thalamus is processed by the activity of several striatal neuromodulatory systems including the cholinergic system. Acetylcholine potently modulates glutamate signaling in the striatum via activation of muscarinic receptors (mAChRs). It is, however, unclear which mAChR subtype is responsible for this modulatory effect. Here, by using electrophysiological, optogenetic, and immunoelectron microscopic approaches in conjunction with a novel, highly selective M4 positive allosteric modulator VU0152100 (ML108) and M4 knockout mice, we show that M4 is a major mAChR subtype mediating the cholinergic inhibition of corticostriatal glutamatergic input on both striatonigral and striatopallidal medium spiny neurons (MSNs). This effect is due to activation of presynaptic M4 receptors, which, in turn, leads to a decrease in glutamate release from corticostriatal terminals. The findings of the present study raise the interesting possibility that M4 mAChR could be a novel therapeutic target for the treatment of neurological and neuropsychiatric disorders involving hyper-glutamatergic transmission at corticostriatal synapses.


Assuntos
Córtex Cerebral/fisiologia , Neurônios Colinérgicos/fisiologia , Corpo Estriado/fisiologia , Glutamatos/metabolismo , Receptor Muscarínico M4/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural/fisiologia , Vias Neurais/fisiologia
6.
Neurobiol Aging ; 34(8): 1977-87, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23545425

RESUMO

The prevalence of obesity and type 2 diabetes increases with age. Despite this, few studies have examined these conditions simultaneously in aged animals, and fewer studies have measured the impact of these conditions on brain function. Using an established animal model of brain aging (F344 rats), we investigated whether a high-fat diet (HFD) exacerbates cognitive decline and the hippocampal calcium-dependent afterhyperpolarization (a marker of age-dependent calcium dysregulation). Young and mid-aged animals were maintained on control or HFD for 4.5 months, and peripheral metabolic variables, cognitive function, and electrophysiological responses to insulin in the hippocampus were measured. HFD increased lipid accumulation in the periphery, although overt diabetes did not develop, nor were spatial learning and memory altered. Hippocampal adiponectin levels were reduced in aging animals but were unaffected by HFD. For the first time, however, we show that the AHP is sensitive to insulin, and that this sensitivity is reduced by HFD. Interestingly, although peripheral glucose regulation was relatively insensitive to HFD, the brain appeared to show greater sensitivity to HFD in F344 rats.


Assuntos
Envelhecimento/metabolismo , Envelhecimento/fisiologia , Cognição , Dieta Hiperlipídica/efeitos adversos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Transtornos da Memória/etiologia , Transtornos da Memória/psicologia , Adiponectina/metabolismo , Envelhecimento/psicologia , Animais , Cálcio/metabolismo , Diabetes Mellitus Tipo 2/etiologia , Progressão da Doença , Masculino , Transtornos da Memória/metabolismo , Obesidade/etiologia , Ratos , Ratos Endogâmicos F344 , Fatores de Risco
7.
ACS Chem Neurosci ; 3(11): 884-95, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23173069

RESUMO

The M(1) muscarinic acetylcholine receptor is thought to play an important role in memory and cognition, making it a potential target for the treatment of Alzheimer's disease (AD) and schizophrenia. Moreover, M(1) interacts with BACE1 and regulates its proteosomal degradation, suggesting selective M(1) activation could afford both palliative cognitive benefit as well as disease modification in AD. A key challenge in targeting the muscarinic acetylcholine receptors is achieving mAChR subtype selectivity. Our lab has previously reported the M(1) selective positive allosteric modulator ML169. Herein we describe our efforts to further optimize this lead compound by preparing analogue libraries and probing novel scaffolds. We were able to identify several analogues that possessed submicromolar potency, with our best example displaying an EC(50) of 310 nM. The new compounds maintained complete selectivity for the M(1) receptor over the other subtypes (M(2)-M(5)), displayed improved DMPK profiles, and potentiated the carbachol (CCh)-induced excitation in striatal MSNs. Selected analogues were able to potentiate CCh-mediated nonamyloidogenic APPsα release, further strengthening the concept that M(1) PAMs may afford a disease-modifying role in the treatment of AD.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Indóis/farmacologia , Agonistas Muscarínicos/farmacologia , Receptor Muscarínico M1/efeitos dos fármacos , Sulfonas/farmacologia , Animais , Cognição/efeitos dos fármacos , Descoberta de Drogas , Indóis/síntese química , Agonistas Muscarínicos/síntese química , Miotonina Proteína Quinase , Neurônios/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Ratos , Receptor Muscarínico M1/genética , Sulfonas/síntese química
8.
J Alzheimers Dis ; 30(4): 943-61, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22495349

RESUMO

Thiazolidinediones (TZDs) are agonists at peroxisome proliferator-activated gamma-type (PPAR-γ) receptors and are used clinically for the treatment of type 2 diabetes where they have been shown to reestablish insulin sensitivity, improve lipid profiles, and reduce inflammation. Recent work also suggests that TZDs may be beneficial in Alzheimer's disease (AD), ameliorating cognitive decline early in the disease process. However, there have been only a few studies identifying mechanisms through which cognitive benefits may be exerted. Starting at 10 months of age, the triple transgenic mouse model of AD (3xTg-AD) with accelerated amyloid-ß (Aß) deposition and tau pathology was treated with the TZD pioglitazone (PIO-Actos) at 18 mg/Kg body weight/day. After four months, PIO-treated animals showed multiple beneficial effects, including improved learning on the active avoidance task, reduced serum cholesterol, decreased hippocampal amyloid-ß and tau deposits, and enhanced short- and long-term plasticity. Electrophysiological membrane properties and post-treatment blood glucose levels were unchanged by PIO. Gene microarray analyses of hippocampal tissue identified predicted transcriptional responses following TZD treatment as well as potentially novel targets of TZDs, including facilitation of estrogenic processes and decreases in glutamatergic and lipid metabolic/cholesterol dependent processes. Taken together, these results confirm prior animal studies showing that TZDs can ameliorate cognitive deficits associated with AD-related pathology, but also extend these findings by pointing to novel molecular targets in the brain.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Aprendizagem/efeitos dos fármacos , Tiazolidinedionas/administração & dosagem , Doença de Alzheimer/psicologia , Animais , Biomarcadores/sangue , Química Encefálica/efeitos dos fármacos , Química Encefálica/fisiologia , Modelos Animais de Doenças , Esquema de Medicação , Feminino , Aprendizagem/fisiologia , Camundongos , Camundongos Transgênicos , Pioglitazona , Fatores de Tempo
9.
Biochim Biophys Acta ; 1822(4): 546-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22265986

RESUMO

Increased function of neuronal L-type voltage-sensitive Ca(2+) channels (L-VSCCs) is strongly linked to impaired memory and altered hippocampal synaptic plasticity in aged rats. However, no studies have directly assessed L-VSCC function in any of the common mouse models of Alzheimer's disease where neurologic deficits are typically more robust. Here, we used cell-attached patch-clamp recording techniques to measure L-VSCC activity in CA1 pyramidal neurons of partially dissociated hippocampal "zipper" slices prepared from 14-month-old wild-type mice and memory-impaired APP/PS1 double knock-in mice. Surprisingly, the functional channel density of L-VSCCs was significantly reduced in the APP/PS1 group. No differences in voltage dependency and unitary conductance of L-VSCCs were observed. The results suggest that mechanisms for Ca(2+) dysregulation can differ substantially between animal models of normal aging and models of pathological aging.


Assuntos
Doença de Alzheimer/fisiopatologia , Canais de Cálcio Tipo L/fisiologia , Modelos Animais de Doenças , Neurônios/fisiologia , Animais , Masculino , Camundongos , Camundongos Transgênicos
10.
Cell Calcium ; 50(6): 548-58, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21978418

RESUMO

Neuronal Ca(2+) dyshomeostasis associated with cognitive impairment and mediated by changes in several Ca(2+) sources has been seen in animal models of both aging and diabetes. In the periphery, dysregulation of intracellular Ca(2+) signals may contribute to the development of insulin resistance. In the brain, while it is well-established that type 2 diabetes mellitus is a risk factor for the development of dementia in the elderly, it is not clear whether Ca(2+) dysregulation might also affect insulin sensitivity and glucose utilization. Here we present a combination of imaging techniques testing the disappearance of the fluorescent glucose analog 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG) as an indication of glycolytic activity in neurons and astrocytes. Our work shows that glucose utilization at rest is greater in neurons compared to astrocytes, and ceases upon activation in neurons with little change in astrocytes. Pretreatment of hippocampal cultures with pioglitazone, a drug used in the treatment of type 2 diabetes, significantly reduced glycolytic activity in neurons and enhanced it in astrocytes. This series of experiments, including Fura-2 and NADH imaging, provides results that are consistent with the idea that Ca(2+) levels may rapidly alter glycolytic activity, and that downstream events beyond Ca(2+) dysregulation with aging, may alter cellular metabolism in the brain.


Assuntos
4-Cloro-7-nitrobenzofurazano/análogos & derivados , Astrócitos/metabolismo , Cálcio/metabolismo , Desoxiglucose/análogos & derivados , Corantes Fluorescentes/análise , NAD/metabolismo , Neurônios/metabolismo , Tiazolidinedionas/farmacologia , 4-Cloro-7-nitrobenzofurazano/análise , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Desoxiglucose/análise , Fura-2 , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Hipocampo/citologia , NAD/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Pioglitazona , Ratos , Ratos Sprague-Dawley
11.
PLoS One ; 5(4): e10405, 2010 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-20454453

RESUMO

BACKGROUND: Thiazolidinediones (TZDs) activate peroxisome proliferator-activated receptor gamma (PPARgamma) and are used clinically to help restore peripheral insulin sensitivity in Type 2 diabetes (T2DM). Interestingly, long-term treatment of mouse models of Alzheimer's disease (AD) with TZDs also has been shown to reduce several well-established brain biomarkers of AD including inflammation, oxidative stress and Abeta accumulation. While TZD's actions in AD models help to elucidate the mechanisms underlying their potentially beneficial effects in AD patients, little is known about the functional consequences of TZDs in animal models of normal aging. Because aging is a common risk factor for both AD and T2DM, we investigated whether the TZD, pioglitazone could alter brain aging under non-pathological conditions. METHODS AND FINDINGS: We used the F344 rat model of aging, and monitored behavioral, electrophysiological, and molecular variables to assess the effects of pioglitazone (PIO-Actos(R) a TZD) on several peripheral (blood and liver) and central (hippocampal) biomarkers of aging. Starting at 3 months or 17 months of age, male rats were treated for 4-5 months with either a control or a PIO-containing diet (final dose approximately 2.3 mg/kg body weight/day). A significant reduction in the Ca(2+)-dependent afterhyperpolarization was seen in the aged animals, with no significant change in long-term potentiation maintenance or learning and memory performance. Blood insulin levels were unchanged with age, but significantly reduced by PIO. Finally, a combination of microarray analyses on hippocampal tissue and serum-based multiplex cytokine assays revealed that age-dependent inflammatory increases were not reversed by PIO. CONCLUSIONS: While current research efforts continue to identify the underlying processes responsible for the progressive decline in cognitive function seen during normal aging, available medical treatments are still very limited. Because TZDs have been shown to have benefits in age-related conditions such as T2DM and AD, our study was aimed at elucidating PIO's potentially beneficial actions in normal aging. Using a clinically-relevant dose and delivery method, long-term PIO treatment was able to blunt several indices of aging but apparently affected neither age-related cognitive decline nor peripheral/central age-related increases in inflammatory signaling.


Assuntos
Envelhecimento/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Doença de Alzheimer , Animais , Biomarcadores/análise , Biomarcadores/sangue , Encéfalo/fisiologia , Hipocampo , Hipoglicemiantes/farmacologia , Inflamação , Aprendizagem/efeitos dos fármacos , Fígado , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Pioglitazona , Ratos
12.
J Neurochem ; 109(6): 1800-11, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19453298

RESUMO

Type 2 diabetes mellitus is a metabolic disorder characterized by hyperglycemia and is especially prevalent in the elderly. Because aging is a risk factor for type 2 diabetes mellitus, and insulin resistance may contribute to the pathogenesis of Alzheimer's disease (AD), anti-diabetic agents (thiazolidinediones-TZDs) are being studied for the treatment of cognitive decline associated with AD. These agents normalize insulin sensitivity in the periphery and can improve cognition and verbal memory in AD patients. Based on evidence that Ca(2+) dysregulation is a pathogenic factor of brain aging/AD, we tested the hypothesis that TZDs could impact Ca(2+) signaling/homeostasis in neurons. We assessed the effects of pioglitazone and rosiglitazone (TZDs) on two major sources of Ca(2+) influx in primary hippocampal cultured neurons, voltage-gated Ca(2+) channel (VGCC) and the NMDA receptor (NMDAR). VGCC- and NMDAR-mediated Ca(2+) currents were recorded using patch-clamp techniques, and Ca(2+) intracellular levels were monitored with Ca(2+) imaging techniques. Rosiglitazone, but not pioglitazone reduced VGCC currents. In contrast, NMDAR-mediated currents were significantly reduced by pioglitazone but not rosiglitazone. These results show that TZDs modulate Ca(2+)-dependent pathways in the brain and have different inhibitory profiles on two major Ca(2+) sources, potentially conferring neuroprotection to an area of the brain that is particularly vulnerable to the effects of aging and/or AD.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Hipocampo/citologia , Neurônios/efeitos dos fármacos , PPAR gama/agonistas , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/fisiologia , Sinalização do Cálcio/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Interações Medicamentosas , Estimulação Elétrica/métodos , Embrião de Mamíferos , Ensaio de Imunoadsorção Enzimática/métodos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Hipoglicemiantes/farmacologia , Neuroglia , PPAR gama/metabolismo , Técnicas de Patch-Clamp/métodos , Pioglitazona , Gravidez , Ligação Proteica/efeitos dos fármacos , Ratos , Receptores de N-Metil-D-Aspartato/fisiologia , Rosiglitazona , Tiazolidinedionas/farmacologia , Fatores de Tempo
13.
Eur J Neurosci ; 25(12): 3597-604, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17610579

RESUMO

Activation of glutamate receptors has been proposed as a key factor in the induction of ischemic tolerance. We used organotypic rat hippocampal slices exposed to 30 min oxygen-glucose deprivation (OGD) to evaluate postischemic pyramidal cell death in the CA1 subregion. In this model, 10 min exposure to OGD 24 h before the exposure to toxic OGD was not lethal and reduced the subsequent OGD neurotoxicity by approximately 53% (ischemic preconditioning). Similarly, a 30 min exposure to the group I mGlu receptor agonist DHPG (10 microM) significantly reduced OGD neurotoxicity 24 h later (pharmacological preconditioning). Ischemic tolerance did not develop when either the selective mGlu1 antagonists LY367385 and 3-MATIDA or the AMPA/KA antagonist CNQX were present in the incubation medium during exposure to sublethal OGD. Neither the NMDA antagonist MK801 nor the mGlu5 antagonist MPEP affected the preconditioning process. On the other hand, pharmacological preconditioning was prevented not only by LY367385 or CNQX, but also by MPEP. In preconditioned slices, the toxic responses to AMPA or NMDA were reduced. The neurotoxicty of 100 microM DHPG in slices simultaneously exposed to a mild (20 min) OGD was differentially altered in the two preconditioning paradigms. After ischemic preconditioning, DHPG neurotoxicity was reduced in a manner that was sensitive to LY367385 but not to MPEP, whereas after pharmacological preconditioning it was enhanced in a manner that was sensitive to MPEP but not to LY367385. Our results show that mGlu1 and mGlu5 receptors are differentially involved in the induction and expression of ischemic tolerance following two diverse preconditioning stimuli.


Assuntos
Hipocampo/patologia , Isquemia/patologia , Precondicionamento Isquêmico , Células Piramidais/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Animais , Animais Recém-Nascidos , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Relação Dose-Resposta a Droga , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Técnicas In Vitro , Isquemia/prevenção & controle , Modelos Biológicos , Células Piramidais/efeitos dos fármacos , Ratos , Ratos Wistar , Receptor de Glutamato Metabotrópico 5 , Fatores de Tempo
14.
Mol Pharmacol ; 70(6): 1876-84, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16946032

RESUMO

Pharmacological manipulation of gene expression is considered a promising avenue to reduce postischemic brain damage. Histone deacetylases (HDACs) play a central role in epigenetic regulation of transcription, and inhibitors of HDACs are emerging as neuroprotective agents. In this study, we investigated the effect of the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) on histone acetylation in control and ischemic mouse brain. We report that brain histone H3 acetylation was constitutively present at specific lysine residues in neurons and astrocytes. It is noteworthy that in the ischemic brain tissue subjected to 6 h of middle cerebral artery occlusion, histone H3 acetylation levels drastically decreased, without evidence for a concomitant change of histone acetyl-transferase or deacetylase activities. Treatment with SAHA (50 mg/kg i.p.) increased histone H3 acetylation within the normal brain (of approximately 8-fold after 6 h) and prevented histone deacetylation in the ischemic brain. These effects were accompanied by increased expression of the neuroprotective proteins Hsp70 and Bcl-2 in both control and ischemic brain tissue 24 h after the insult. It is noteworthy that at the same time point, mice injected with SAHA at 25 and 50 mg/kg had smaller infarct volumes compared with vehicle-receiving animals (28.5% and 29.8% reduction, p < 0.05 versus vehicle, Student's t test). At higher doses, SAHA was less efficient in increasing Bcl-2 and Hsp70 expression and did not afford significant ischemic neuroprotection (13.9% infarct reduction). Data demonstrate that pharmacological inhibition of HDACs promotes expression of neuroprotective proteins within the ischemic brain and underscores the therapeutic potential of molecules inhibiting HDACs for stroke therapy.


Assuntos
Isquemia Encefálica/prevenção & controle , Encéfalo/irrigação sanguínea , Inibidores Enzimáticos/farmacologia , Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases , Ácidos Hidroxâmicos/farmacologia , Animais , Western Blotting , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vorinostat
15.
Anesthesiology ; 104(1): 80-9, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16394694

RESUMO

BACKGROUND: Propofol (2,6-diisopropylphenol) has been shown to attenuate neuronal injury in a number of experimental conditions, but studies in models of cerebral ischemia have yielded conflicting results. Moreover, the mechanisms involved in its neuroprotective effects are yet unclear. METHODS: The authors evaluated the neuroprotective effects of propofol in rat organotypic hippocampal slices exposed to oxygen-glucose deprivation, an in vitro model of cerebral ischemia. To investigate its possible mechanism of action, the authors then examined whether propofol could reduce Ca2+-induced rat brain mitochondrial swelling, an index of mitochondrial membrane permeability, as well as the mitochondrial swelling evoked by oxygen-glucose deprivation in CA1 pyramidal cells by transmission electron microscopy. Finally, they evaluated whether propofol could attenuate the infarct size and improve the neurobehavioral outcome in rats subjected to permanent middle cerebral artery occlusion in vivo. RESULTS: When present in the incubation medium during oxygen-glucose deprivation and the subsequent 24 h recovery period, propofol (10-100 microM) attenuated CA1 injury in hippocampal slices in vitro. Ca2+-induced brain mitochondrial swelling was prevented by 30-100 microM propofol, and so were the ultrastructural mitochondrial changes in CA1 pyramidal cells exposed to oxygen-glucose deprivation. Twenty-four hours after permanent middle cerebral artery occlusion, propofol (100 mg/kg, intraperitoneal) reduced the infarct size by approximately 30% when administered immediately after and up to 30 min after the occlusion. Finally, propofol administered within 30 min after middle cerebral artery occlusion was unable to affect the global neurobehavioral score but significantly preserved spontaneous activity in ischemic rats. CONCLUSIONS: These results show that propofol, at clinically relevant concentrations, is neuroprotective in models of cerebral ischemia in vitro and in vivo and that it may act by preventing the increase in neuronal mitochondrial swelling.


Assuntos
Anestésicos Intravenosos/farmacologia , Isquemia Encefálica/patologia , Dilatação Mitocondrial/efeitos dos fármacos , Fármacos Neuroprotetores , Propofol/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Isquemia Encefálica/psicologia , Cálcio/farmacologia , Glucose/deficiência , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipóxia/patologia , Técnicas In Vitro , Infarto da Artéria Cerebral Média/patologia , Masculino , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Permeabilidade/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Células Piramidais/patologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA