Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0301971, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38648227

RESUMO

This work, in a pioneering approach, attempts to build a biometric system that works purely based on the fluid mechanics governing exhaled breath. We test the hypothesis that the structure of turbulence in exhaled human breath can be exploited to build biometric algorithms. This work relies on the idea that the extrathoracic airway is unique for every individual, making the exhaled breath a biomarker. Methods including classical multi-dimensional hypothesis testing approach and machine learning models are employed in building user authentication algorithms, namely user confirmation and user identification. A user confirmation algorithm tries to verify whether a user is the person they claim to be. A user identification algorithm tries to identify a user's identity with no prior information available. A dataset of exhaled breath time series samples from 94 human subjects was used to evaluate the performance of these algorithms. The user confirmation algorithms performed exceedingly well for the given dataset with over 97% true confirmation rate. The machine learning based algorithm achieved a good true confirmation rate, reiterating our understanding of why machine learning based algorithms typically outperform classical hypothesis test based algorithms. The user identification algorithm performs reasonably well with the provided dataset with over 50% of the users identified as being within two possible suspects. We show surprisingly unique turbulent signatures in the exhaled breath that have not been discovered before. In addition to discussions on a novel biometric system, we make arguments to utilise this idea as a tool to gain insights into the morphometric variation of extrathoracic airway across individuals. Such tools are expected to have future potential in the area of personalised medicines.


Assuntos
Algoritmos , Testes Respiratórios , Expiração , Aprendizado de Máquina , Humanos , Expiração/fisiologia , Testes Respiratórios/métodos , Identificação Biométrica/métodos
2.
Sci Rep ; 13(1): 9040, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270569

RESUMO

Human lung is known to be an asymmetric dichotomously branched network of bronchioles. Existing literature on the relation between anatomy and air-flow physics in the tracheobronchial trees has discussed the results of asymmetry. We discuss a secondary (but an important) lung function to seek asymmetry: to protect the acinus from a high pathogen load. We build morphometric parameter-based mathematical models of realistic bronchial trees to explore the structure-function relationship. We observe that maximum surface area for gas exchange, minimum resistance and minimum volume are obtained near the symmetry condition. In contrast, we show that deposition of inhaled foreign particles in the non-terminal airways is enhanced by asymmetry. We show from our model, that the optimal value of asymmetry for maximum particle filtration is within 10% of the experimentally measured value in human lungs. This structural trait of the lung aids in self-defence of the host against pathogen laden aerosols. We explain how natural asymmetric design of typical human lungs makes a sacrifice away from gas exchange optimality to gain this protection. In a typical human lung, when compared to most optimal condition (which is associated with symmetric branching), the fluidic resistance is 14% greater, the gas exchange surface area is about 11% lower, the lung volume is about 13% greater to gain an increase of 4.4% protection against foreign particles. This afforded protection is also robust to minor variations in branching ratio or variation in ventilation, which are both crucial to survival.


Assuntos
Pulmão , Respiração , Humanos , Tamanho da Partícula , Pulmão/anatomia & histologia , Brônquios , Modelos Teóricos , Aerossóis , Modelos Biológicos
3.
Front Physiol ; 14: 1073165, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36744036

RESUMO

Respiratory viruses, such as SARS-CoV-2, preliminarily infect the nasopharyngeal mucosa. The mechanism of infection spread from the nasopharynx to the deep lung-which may cause a severe infection-is, however, still unclear. We propose a clinically plausible mechanism of infection spread to the deep lung through droplets, present in the nasopharynx, inhaled and transported into the lower respiratory tract. A coupled mathematical model of droplet, virus transport and virus infection kinetics is exercised to demonstrate clinically observed times to deep lung infection. The model predicts, in agreement with clinical observations, that severe infection can develop in the deep lung within 2.5-7 days of initial symptom onset. Results indicate that while fluid dynamics plays an important role in transporting the droplets, infection kinetics and immune responses determine infection growth and resolution. Immune responses, particularly antibodies and T-lymphocytes, are observed to be critically important for preventing infection severity. This reinforces the role of vaccination in preventing severe infection. Managing aerosolization of infected nasopharyngeal mucosa is additionally suggested as a strategy for minimizing infection spread and severity.

4.
PLoS Comput Biol ; 18(6): e1010143, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35653381

RESUMO

Pulmonary drug delivery systems rely on inhalation of drug-laden aerosols produced from aerosol generators such as inhalers, nebulizers etc. On deposition, the drug molecules diffuse in the mucus layer and are also subjected to mucociliary advection which transports the drugs away from the initial deposition site. The availability of the drug at a particular region of the lung is, thus, determined by a balance between these two phenomena. A mathematical analysis of drug deposition and retention in the lungs is developed through a coupled mathematical model of aerosol transport in air as well as drug molecule transport in the mucus layer. The mathematical model is solved computationally to identify suitable conditions for the transport of drug-laden aerosols to the deep lungs. This study identifies the conditions conducive for delivering drugs to the deep lungs which is crucial for achieving systemic drug delivery. The effect of different parameters on drug retention is also characterized for various regions of the lungs, which is important in determining the availability of the inhaled drugs at a target location. Our analysis confirms that drug delivery efficacy remains highest for aerosols in the size range of 1-5 µm. Moreover, it is observed that amount of drugs deposited in the deep lung increases by a factor of 2 when the breathing time period is doubled, with respect to normal breathing, suggesting breath control as a means to increase the efficacy of drug delivery to the deep lung. A higher efficacy also reduces the drug load required to be inhaled to produce the same health effects and hence, can help in minimizing the side effects of a drug.


Assuntos
Sistemas de Liberação de Medicamentos , Pulmão , Aerossóis/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Muco , Tamanho da Partícula
5.
Phys Fluids (1994) ; 32(11): 111903, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33244213

RESUMO

The transport and deposition of micrometer-sized particles in the lung is the primary mechanism for the spread of aerosol borne diseases such as corona virus disease-19 (COVID-19). Considering the current situation, modeling the transport and deposition of drops in human lung bronchioles is of utmost importance to determine their consequences on human health. The current study reports experimental observations on deposition in micro-capillaries, representing distal lung bronchioles, over a wide range of Re that imitates the particle dynamics in the entire lung. The experiment investigated deposition in tubes of diameter ranging from 0.3 mm to 2 mm and over a wide range of Reynolds number (10-2 ⩽ Re ⩽ 103). The range of the tube diameter and Re used in this study is motivated by the dimensions of lung airways and typical breathing flow rates. The aerosol fluid was loaded with boron doped carbon quantum dots as fluorophores. An aerosol plume was generated from this mixture fluid using an ultrasonic nebulizer, producing droplets with 6.5 µm as a mean diameter and over a narrow distribution of sizes. The amount of aerosol deposited on the tube walls was measured using a spectrofluorometer. The experimental results show that dimensionless deposition (δ) varies inversely with the bronchiole aspect ratio ( L ¯ ), with the effect of the Reynolds number (Re) being significant only at low L ¯ . δ also increased with increasing dimensionless bronchiole diameter ( D ¯ ), but it is invariant with the particle size based Reynolds number. We show that δ L ¯ ∼ R e - 2 for 10-2 ⩽ Re ⩽ 1, which is typical of a diffusion dominated regime. For Re ⩾ 1, in the impaction dominated regime, δ L ¯ is shown to be independent of Re. We also show a crossover regime where sedimentation becomes important. The experimental results conclude that lower breathing frequency and higher breath hold time could significantly increase the chances of getting infected with COVID-19 in crowded places.

6.
Phys Fluids (1994) ; 32(9): 094101, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32952382

RESUMO

Understanding the breakup morphology of an expelled respiratory liquid is an emerging interest in diverse fields to enhance the efficacious strategies to attenuate disease transmission. In this paper, we present the possible hydrodynamic instabilities associated with expelling the respiratory liquid by a human. For this purpose, we have performed experiments with a cylindrical soap film and air. The sequence of the chain of events was captured with high-speed imaging. We have identified three mechanisms, namely, Kelvin-Helmholtz (K-H) instability, Rayleigh-Taylor (R-T) instability, and Plateau-Rayleigh (P-R) instability, which are likely to occur in sequence. Furthermore, we discuss the multiple processes responsible for drop fragmentation. The processes such as breakup length, rupture, ligament, and drop formation are documented with a scaling factor. The breakup length scales with We -0.17, and the number of ligaments scales as B o . In addition, the thickness of the ligaments scales as We -0.5. Here, We and Bo represent the Weber and Bond numbers, respectively. It was also demonstrated that the flapping of the liquid sheet is the result of the K-H mechanism, and the ligaments formed on the edge of the rim appear due to the R-T mechanism, and finally, the hanging drop fragmentation is the result of the P-R instability. Our study highlights that the multiple instabilities play a significant role in determining the size of the droplets while expelling a respiratory liquid. This understanding is crucial to combat disease transmission through droplets.

7.
J Chem Phys ; 150(23): 234903, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31228901

RESUMO

We investigate the effect of the Schmidt number (Sc) on phase separation dynamics of two immiscible fluids in a two-dimensional periodic box using dissipative particle dynamics. The range of Sc investigated spans liquid-liquid separation processes. Phase separation is characterized by a domain size r(t), which typically follows a power law tß in time t, where ß is a characteristic exponent corresponding to the coarsening mechanism at play. The phase separation dynamics is studied for strongly (deep quench) separating mixtures. We consider cases of critical (ϕ ∼ 0.5) and off-critical (ϕ < 0.5) mixtures of fluids A and B for both ScA = ScB and ScA ≠ ScB. In all cases, the growth dynamics slow down with the increasing Schmidt number of either fluid. We observe the power law exponent ß = 0.5 for symmetric (ScA = ScB) critical mixtures and ß = 0.33 for all other cases. However, for off-critical mixtures, the exponent is 0.33 irrespective of the Schmidt number ratio of the two fluids. We explain these results from an analysis of the competition between diffusive effects vis-á-vis dynamical forces.

8.
Soft Matter ; 15(10): 2284-2291, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30775771

RESUMO

Marangoni flow created by the gradient of surface tension can be used to transport small objects along fluid interfaces. We study lateral motion of a fully wetted self-propelled body (swimmer) at a fluid-fluid interface. The swimmer releases a surfactant at a constant rate inducing a surface tension gradient. The dynamics of the insoluble surfactant is incorporated by taking into account advection by the Marangoni flow, surface diffusion and homogeneous decomposition reaction. We show that the translational speed of a Marangoni swimmer is increased as compared with the self-propulsion speed of a chemically inactive surface-bound swimmer. Flow induced in-plane rotation of the swimmer with an elongated body is generally weak so that its trajectory in the steady state is a straight line. A non-motile thin rod that releases surfactant at one of its ends is capable of surfing on the self-generated surfactant cloud. Steady surfing occurs along the body length with the source of the surfactant at the back end acting as a propulsion engine.

9.
Phys Rev Lett ; 122(4): 048002, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30768343

RESUMO

Using a dynamic variant of the Vicsek model, we show that the emergence of disorder from an orderly moving human crowd is a nonequilibrium first-order phase transition. We also show that this transition can be reversed by modifying the dynamics of a few agents, deemed as game changers. Surprisingly, the optimal placement of these game changers is found to be in regions of maximum local crowd speed. The presence of such game changers is effective owing to the discontinuous nature of the underlying phase transition. Thus our generic approach provides strategies to (i) delay crowd crush and (ii) design safe evacuation procedures, two aspects that are of paramount importance in maintaining safety of mass gatherings of people.


Assuntos
Aglomeração , Movimento , Comportamento de Escolha , Emoções , Humanos , Modelos Teóricos
11.
J Chem Phys ; 147(7): 074703, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28830165

RESUMO

We investigate the phase separation behavior of binary mixtures in two-dimensional periodic and confined domains using dissipative particle dynamics. Two canonical problems of fluid mechanics are considered for the confined domains: square cavity with no-slip walls and lid-driven cavity with one driven wall. The dynamics is studied for both weakly and strongly separating mixtures and different area fractions. The phase separation process is analyzed using the structure factor and the total interface length. The dynamics of phase separation in the square cavity and lid-driven cavity are observed to be significantly slower when compared to the dynamics in the periodic domain. The presence of the no-slip walls and the inertial effects significantly influences the separation dynamics. Finally, we show that the growth exponent for the strongly separating case is invariant to changes in the inter-species repulsion parameter.

12.
Phys Rev E ; 95(6-1): 062610, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28709325

RESUMO

We study the collective motion of a dense suspension of active swimmers in a viscous fluid medium. The swimmers are modeled as soft spheres moving in a highly viscous fluid medium. The magnitude of the propelling thrust exerted by each particle is taken to be a constant and the direction is aligned to its velocity. Depending on the magnitude of the exerted thrust, several nonequilibrium steady states are observed. The transitions between the steady states are characterized using the total dissipation as a function of the magnitude of the thrust. The transitions between the nonequilibrium states are characterized by changes in exponent at low thrust values. At high thrust values, hysteretic transitions between ordered and disordered states are observed.

13.
Langmuir ; 33(18): 4592-4600, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28423278

RESUMO

Drops that impact and stick to a surface (splattered drops) commonly show noncircular triple lines. Physical or chemical defects on the surface are known to pin the triple line in this static metastable state. We report an experimental study to relate the defect distribution on a surface to the triple-line microstructure of such drops. Triple lines of an ensemble of splattered drops have been imaged on a range of surfaces varying in wetting properties. Local contact angles have been calculated, and the microscale pinning force distribution has been estimated. We propose a novel method of estimating defect strength distribution from the pinning forces, using extreme value analysis. From this analysis, we show that pinning force distributions have finite upper and lower bounds. We show that most common surfaces show both hydrophobic and hydrophilic defects, but their strength distributions are asymmetric in relation to the surface's advancing and receding angles. In addition, we show that the range of microscopic pinning forces varies linearly with macroscopic contact angle hysteresis but, surprisingly, with a nonzero intercept. We explain the intercept by drawing an analogy to static and dynamic friction.

14.
Indian J Med Res ; 144(2): 220-228, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27934801

RESUMO

BACKGROUND & OBJECTIVES: Glycosylated haemoglobin (HbA 1c ) has been in use for more than a decade, as a diagnostic test for type 2 diabetes. Validity of HbA 1c needs to be established in the ethnic population in which it is intended to be used. The objective of this study was to derive and validate a HbA 1c cut-off value for the diagnosis of type 2 diabetes in the ethnic population of Rayalaseema area of south India. METHODS: In this cross-sectional study, consecutive patients suspected to have type 2 diabetes underwent fasting plasma glucose (FPG) and 2 h post-load plasma glucose (2 h-PG) measurements after a 75 g glucose load and HbA 1c estimation. They were classified as having diabetes as per the American Diabetes Association criteria [(FPG ≥7 mmol/l (≥126 mg/dl) and/or 2 h-PG ≥11.1 mmol/l (≥200 mg/dl)]. In the training data set (n = 342), optimum cut-off value of HbA 1c for defining type 2 diabetes was derived by receiver-operator characteristic (ROC) curve method using oral glucose tolerance test results as gold standard. This cut-off was validated in a validation data set (n = 341). RESULTS: On applying HbA 1c cut-off value of >6.3 per cent (45 mmol/mol) to the training data set,sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for diagnosing type 2 diabetes were calculated to be 90.6, 85.2, 80.8 and 93.0 per cent, respectively. When the same cut-off value was applied to the validation data set, sensitivity, specificity, PPV and NPV were 88.8 , 81.9, 74.0 and 92.7 per cent, respectively, although the latter were consistently smaller than the proportions for the training data set, the differences being not significant. INTERPRETATION & CONCLUSIONS: HbA 1c >6.3 per cent (45 mmol/mol) appears to be the optimal cut-off value for the diagnosis of type 2 diabetes applicable to the ethnic population of Rayalaseema area of Andhra Pradesh state in south India.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Hemoglobinas Glicadas/metabolismo , Adulto , Glicemia , Estudos Transversais , Diabetes Mellitus Tipo 2/patologia , Etnicidade , Feminino , Teste de Tolerância a Glucose , Hemoglobinas Glicadas/isolamento & purificação , Humanos , Índia , Masculino , Pessoa de Meia-Idade
15.
Langmuir ; 28(42): 14860-6, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22994499

RESUMO

Liquid marbles have opened up several potential applications including biochemical batch reaction engineering and gas sensing. To be successful candidates in these applications, the ability to prepare liquid marbles of controlled sizes and in a continuous process is crucial. This has been the missing link in the science leading to these applications. In the current study, we present a remarkably simple process driven by condensation on a nanoparticulate matrix to continuously produce liquid marbles whose mean size can be controlled in the range of diameters from 3 to 1000 µm, while the distribution width is also controllable independently. We experimentally demonstrate the physics involved in this condensation-driven marble formation process using two fluids-glycerol and ethylene glycol-which span an order of magnitude in viscosity. Hydrophobic fumed silica nanoparticulate material is used as the encapsulating medium owing to its intertwined agglomerate nature. We show that the primary mechanism causing the formation of liquid marbles is droplet nucleation followed by growth driven by condensation. Drop coalescence in dense droplet ensembles is the secondary mechanism, which attempts to destroy the distribution width controllability. From a physics perspective, it will be demonstrated that strong coalescence dominated growth gives rise to a hitherto unreported, significantly higher rate of growth.


Assuntos
Etilenoglicol/química , Glicerol/química , Nanopartículas/química , Dióxido de Silício/química , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Propriedades de Superfície
16.
Langmuir ; 26(13): 10745-9, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20377217

RESUMO

We report a simple evaporation process using liquid marbles as precursors to produce high sphericity, precisely diameter controlled polyelectrolyte microspheres. We use poly(diallyldimethylammonium chloride) (PDDA) as the test polyelectrolyte for this experimental study. We present measurements of the rate of mass loss during evaporation to demonstrate evidence of two limiting physical processes. At short times, the rate of mass loss is well described by the "D(2) law" regime, which is vapor diffusion limited. At long times, the rate of water diffusion inside the nearly solid polyelectrolyte microsphere becomes the rate-limiting step. The transition between these two limiting processes is accompanied by changes in the physical morphology inside the microsphere. We compare the estimated values of the water diffusion coefficients with the values reported in the literature to demonstrate good agreement.

17.
Langmuir ; 25(13): 7410-5, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19405481

RESUMO

Wetting of chemically heterogeneous surfaces is modeled using a phase field theory. We focus on a chemically heterogeneous surface composed of squares of one component material embedded in another. Unlike previous studies where the component materials were characterized only by an equilibrium contact angle, in this paper each of the component materials is constitutively allowed to exhibit hysteresis. Using this approach, we investigate the effect of heterogeneity length scale on observed macroscopic behavior. Cassie theory is found to be applicable only in the limit of vanishing length scale. For surfaces with a finite heterogeneity length scale, the advancing and receding contact angles deviate from Cassie theory. We find that this deviation and its length scale dependence are asymmetric and depend on the wetting properties of the embedded material relative to the contiguous substrate.


Assuntos
Modelos Químicos , Tensoativos/química , Propriedades de Superfície , Água/química
18.
J Colloid Interface Sci ; 321(2): 393-400, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18329656

RESUMO

We introduce a phase field model of wetting of surfaces by sessile drops. The theory uses a two-dimensional non-conserved phase field variable to parametrize the Gibbs free energy of the three-dimensional system. Contact line tension and contact angle hysteresis arise from the gradient term in the free energy and the kinetic coefficient respectively. A significant advantage of this approach is in the constitutive specification of hysteresis. The advancing and receding angles of a surface, the liquid-vapor interfacial energy and three-phase line tension are the only required constitutive inputs to the model. We first simulate hysteresis on a smooth chemically homogeneous surface using this theory. Next we show that it is possible to study heterogeneous surfaces whose component surfaces are themselves hysteretic. We use this theory to examine the wetting of a surface containing a circular heterogeneous island. The contact angle for this case is found to be determined solely by the material properties at the contact line in accord with recent experimental data.

19.
Langmuir ; 23(26): 13242; discussion 13243, 2007 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-18001069
20.
Phys Rev Lett ; 99(17): 176102, 2007 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17995349

RESUMO

We propose a novel approach to describe wetting of plane solid surfaces by liquid drops. A two-dimensional nonconserved phase field variable is employed to distinguish between wetted and nonwetted regions on the surface. The imbalance in the Young's force provides for the exchange of relative stability of the two phases. The three-phase contact line tension arises from the gradient energy and contact angle hysteresis from the kinetic coefficient. Using this theory, we discuss contact angle hysteresis on chemically heterogeneous surfaces. We show significant departure from the classical Cassie theory, which is attributed to defect pinning of the continuous triple line.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA