Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol Rep ; 4: 100091, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37091066

RESUMO

The importance of the gut microbiome in the management of various physiological activities including healthy growth and performance of fish and shellfish is now widely considered and being studied in detail for potential applications in aquaculture farming and the future growth of the fish industry. The gut microbiome in all animals including fish is associated with a number of beneficial functions for the host, such as stimulating optimal gastrointestinal development, producing and supplying vitamins to the host, and improving the host's nutrient uptake by providing additional enzymatic activities. Besides nutrient uptake, the gut microbiome is involved in strengthening the immune system and maintaining mucosal tolerance, enhancing the host's resilience against infectious diseases, and the production of anticarcinogenic and anti-inflammatory compounds. Because of its significant role, the gut microbiome is very often considered an "extra organ," as it plays a key role in intestinal development and regulation of other physiological functions. Recent studies suggest that the gut microbiome is involved in energy homeostasis by regulating feeding, digestive and metabolic processes, as well as the immune response. Consequently, deciphering gut microbiome dynamics in cultured fish and shellfish species will play an indispensable role in promoting animal health and aquaculture productivity. It is mentioned that the microbiome community available in the gut tract, particularly in the intestine acts as an innovative source of natural product discovery. The microbial communities that are associated with several marine organisms are the source of natural products with a diverse array of biological activities and as of today, more than 1000 new compounds have been reported from such microbial species. Exploration of such new ingredients from microbial species would create more opportunities for the development of the bio-pharma/aquaculture industries. Considering the important role of the microbiome in the whole life span of fish and shellfish, it is necessary to understand the interaction process between the host and microbial community. However, information pertaining to host-microbiome interaction, particularly at the cellular level, gene expression, metabolic pathways, and immunomodulation mechanisms, the available literature is scanty. It has been reported that there are three ways of interaction involving the host-microbe-environment operates to maintain homeostasis in the fish and shellfish gut i.e. host intrinsic factors, the environment that shapes the gut microbiome composition, and the core microbial community present in the gut system itself has equal influence on the host biology. In the present review, efforts have been made to collect comprehensive information on various aspects of host-microbiome interaction, particularly on the immune system and health maintenance, management of diseases, nutrient uptake, digestion and absorption, gene expression, and metabolism in fish and shellfish.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35870418

RESUMO

Since proteins play an important role in the life of an organism, many researchers are now looking at how genes and proteins interact to form different proteins. It is anticipated that the creation of adequate tools for rapid analysis of proteins will accelerate the determination of functional aspects of these biomolecules and develop new biomarkers and therapeutic targets for the diagnosis and treatment of various diseases. Though shrimp contains high-quality marine proteins, there are reports about the heavy losses to the shrimp industry due to the poor quality of shrimp production and many times due to mass mortality also. Frequent outbreaks of diseases, water pollution, and quality of feed are some of the most recognized reasons for such losses. In the seafood export market, shrimp occupies the top position in currency earnings and strengthens the economy of many developing nations. Therefore, it is vital for shrimp-producing companies they produce healthy shrimp with high-quality protein. Though aquaculture is a very competitive market, global awareness regarding the use of scientific knowledge and emerging technologies to obtain better-farmed organisms through sustainable production has enhanced the importance of proteomics in seafood biology research. Proteomics, as a powerful tool, has therefore been increasingly used to address several issues in shrimp aquaculture. In the present paper, efforts have been made to address some of them, particularly the role of proteomics in reproduction, breeding and spawning, immunological responses and disease resistance capacity, nutrition and health, microbiome and probiotics, quality and safety of shrimp production, bioinformatics applications in proteomics, the discovery of protein biomarkers, and mitigating biotic and abiotic stresses. Future challenges and research directions on proteomics in shrimp aquaculture have also been discussed.


Assuntos
Penaeidae , Proteômica , Animais , Aquicultura , Biologia Computacional , Crustáceos , Penaeidae/metabolismo , Alimentos Marinhos
3.
J Anim Physiol Anim Nutr (Berl) ; 106(2): 441-469, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34355428

RESUMO

The microbiome actually deals with micro-organisms that are associated with indigenous body parts and the entire gut system in all animals, including human beings. These microbes are linked with roles involving hereditary traits, defence against diseases and strengthening overall immunity, which determines the health status of an organism. Considerable efforts have been made to find out the microbiome diversity and their taxonomic identification in finfish and shellfish and its importance has been correlated with various physiological functions and activities. In recent past due to the availability of advanced molecular tools, some efforts have also been made on DNA sequencing of these microbes to understand the environmental impact and other stress factors on their genomic structural profile. There are reports on the use of next-generation sequencing (NGS) technology, including amplicon and shot-gun approaches, and associated bioinformatics tools to count and classify commensal microbiome at the species level. The microbiome present in the whole body, particularly in the gut systems of finfish and shellfish, not only contributes to digestion but also has an impact on nutrition, growth, reproduction, immune system and vulnerability of the host fish to diseases. Therefore, the study of such microbial communities is highly relevant for the development of new and innovative bio-products which will be a vital source to build bio and pharmaceutical industries, including aquaculture. In recent years, attempts have been made to discover the chemical ingredients present in these microbes in the form of biomolecules/bioactive compounds with their functions and usefulness for various health benefits, particularly for the treatment of different types of disorders in animals. Therefore, it has been speculated that microbiomes hold great promise not only as a cure for ailments but also as a preventive measure for the number of infectious diseases. This kind of exploration of new breeds of microbes with their miraculous ingredients will definitely help to accelerate the development of the drugs, pharmaceutical and other biological related industries. Probiotic research and bioinformatics skills will further escalate these opportunities in the sector. In the present review, efforts have been made to collect comprehensive information on the finfish and shellfish microbiome, their diversity and functional properties, relationship with diseases, health status, data on species-specific metagenomics, probiotic research and bioinformatics skills. Further, emphasis has also been made to carry out microbiome research on priority basis not only to keep healthy environment of the fish farming sector but also for the sustainable growth of biological related industries, including aquaculture.


Assuntos
Peixes , Microbioma Gastrointestinal , Frutos do Mar , Animais , Aquicultura , Peixes/microbiologia , Frutos do Mar/microbiologia
4.
Anim Biotechnol ; 33(5): 897-913, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33241975

RESUMO

In the vertebrates, including fish, the tyrosinase enzyme plays an essential role in coloration. Modulation of tyrosinase activity is expected to alter the body pigmentation in fish and other vertebrate species. In the present study, physicochemical, functional, and structural properties of tyrosinase of three fish species viz., goldfish, Japanese medaka, and common carp were determined. The homology model was developed using the Chimera1.1.2, Swiss model, and Phyre2, and the best model was selected upon evaluation. Further, a virtual screening method was applied to identify the putative modulators using the PyRx- Virtual screening tool. The estimated physicochemical and functional properties of tyrosinase from the three species suggested that they all are hydrophobic, acidic, thermostable, with a high extinction coefficient (Cys, Trp, and Tyr) and have transmembrane-segment. Based on virtual screening against 13,000 compounds from the zinc database, five compounds were determined as potent modulators of fish tyrosinase with a binding energy of -7.0 to -8.8 Kcal/mol. Of these, Pilosine (ZINC13469966) was found to be the best putative modulator with low binding energy and properties of standardized drugs. This study showed that the tyrosinase function could be modulated to alter the pigment formation in fish species by using small compound.


Assuntos
Melaninas , Monofenol Mono-Oxigenase , Animais , Monofenol Mono-Oxigenase/metabolismo , Pigmentação , Zinco
5.
Plants (Basel) ; 8(7)2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31319560

RESUMO

Natural products derived from plants play a vital role in the discovery of new drug candidates, and these are used for novel therapeutic drug development. Andrographis paniculata and Spilanthes paniculata are used extensively as medicinal herbs for the treatment of various ailments, and are reported to have neuroprotective properties. ß-amyloid is a microscopic brain protein whose significant aggregation is detected in mild cognitive impairment and Alzheimer's disease (AD) brains. The accumulation of ß-amyloid disrupts cell communication and triggers inflammation by activating immune cells, leading to neuronal cell death and cognitive disabilities. The proteases acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and beta secretase-1 (BACE-1) have been reported to be correlated with the synthesis and growth of ß-amyloid plaques in the brains of AD patients. In the present study, the phenolic compounds from A. paniculata and S. paniculata that have been reported in the literature were selected for the current investigation. Furthermore, we employed molecular docking and molecular dynamics studies of the phenolic compounds with the proteins AChE, BChE, and BACE-1 in order to evaluate the binding characteristics and identify potent anti-amyloid agents against the neurodegenerative diseases such as AD. In this investigation, we predicted three compounds from A. paniculata with maximum binding affinities with cholinesterases and BACE-1. The computational investigations predicted that these compounds follow the rule of five. We further evaluated these molecules for in vitro inhibition activity against all the enzymes. In the in vitro investigations, 3,4-di-o-caffeoylquinic acid (5281780), apigenin (5280443), and 7-o-methylwogonin (188316) were found to be strong inhibitors of AChE, BChE, and BACE-1. These findings suggest that these compounds can be potent multi-target inhibitors of the proteases that might cumulatively work and inhibit the initiation and formation of ß-amyloid plaques, which is a prime cause of neurotoxicity and dementia. According to our knowledge, these findings are the first report on natural compounds isolated from A. paniculata as multi-target potent inhibitors and anti-amyloid agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA