Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 22(28): 5790-5796, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38940763

RESUMO

A novel biomass-derived glucose-mediated one-pot multicomponent nitro-reductive cyclization method is presented for the direct synthesis of diverse pyrrole-fused heterocycles. The process involves two-component reactions of alkyl (NH)-pyrrole-2-carboxylates and 2-fluoronitroarenes, yielding pyrrolo[1,2-a]quinoxalin-4(5H)-ones, as well as three-component reactions utilizing (NH)-pyrroles, nitroarenes, and DMSO as carbon sources, resulting in various pyrrolo[1,2-a]quinoxaline derivatives. High yields were achieved with broad substrate scope and gram-scale synthesis capability, including pharmaceuticals featuring pyrroloquinoxaline scaffolds. The method's key innovation lies in enabling three or four reactions in a single-pot setup, previously unexplored in pyrrole chemistry. The simplicity of nitro group reduction by biomass-derived glucose ensures practical safety during scale-up, while mechanistic insights from control experiments reveal a new paradigm in pyrrole chemistry. The tandem process demonstrates low PMI values and high step and atom economies, aligning well with green chemistry principles.

2.
Org Biomol Chem ; 22(15): 3045-3052, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38536061

RESUMO

An elegant synthesis of pyrrole-2-carboxylic acid anhydrides from pyrrole-2-carboxaldehydes using TBAI as a catalyst and tert-butyl hydroperoxide (TBHP) as an oxidant is described herein. Unlike the previous reports wherein pyrrole-2-carboxylic acids were invariably used, we report here for first time the oxidative self-coupling of N-benzyl pyrrole-2-carboxaldehydes for the synthesis of 1-benzyl-1H-pyrrole-2-carboxylic anhydrides. In addition, a one-pot synthesis of novel pyrrole-2-carboxamides from pyrrole-2-carboxaldehydes is also reported. The mechanistic investigation supports a previously unexplored oxidative self-coupling of a pyrrole acyl radical, leading to the synthesis of a carboxylic anhydride.

3.
Chem Commun (Camb) ; 59(68): 10259-10262, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37534600

RESUMO

A non-traditional approach for the synthesis of pyrrole carboxamides from pyrrole carboxaldehyde and formamides or amines with catalytic amounts of nBu4NI and TBHP as oxidants is reported herein. The method is operationally simple providing straightforward access to primary, secondary, and tertiary pyrrole carboxamides in good to excellent yields utilizing inexpensive reagents under mild conditions. Unlike traditional amidations that involve ionic reactions, a mechanistic study of our current method unveils the involvement of 2- or 3-pyrrole acyl radicals that are otherwise rarely postulated. The applicability of the current method is further demonstrated in the synthesis of a drug-like compound, i.e., an optically pure carboetomidate amide.

4.
Chem Rec ; 21(4): 715-780, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33650751

RESUMO

Among the known aromatic nitrogen heterocycles, pyrrole represents a privileged aromatic heterocycle ranging its occurrence in the key component of "pigments of life" to biologically active natural products to active pharmaceuticals. Pyrrole being an electron-rich heteroaromatic compound, its predominant functionalization is legendary to aromatic electrophilic substitution reactions. Although a few excellent reviews on the functionalization of pyrroles including the reports by Baltazzi in 1963, Casiraghi and Rassu in 1995, and Banwell in 2006 are available, they are fragmentary and over fifteen years old, and do not cover the modern aspects of catalysis. A review covering a comprehensive package of direct functionalization on pyrroles via catalytic and non-catalytic methods including their translational potential is described. Subsequent to statutory yet concise introduction, the classical functionalization on pyrroles using Lewis acids largely following an ionic mechanism is discussed. The subsequent discussion follows the various metal-catalyzed C-H functionalization on pyrroles, which are otherwise difficult to implement by Lewis acids. A major emphasize is given on the radical based pyrrole functionalization under metal-free oxidative conditions, which is otherwise poorly highlighted in the literature. Towards the end, the current development of pyrrole functionalization under photocatalyzed and electrochemical conditions is appended. Only a selected examples of substrates and important mechanisms are discussed for different methods highlighting their scopes and limitations. The aromatic nucleophillic substitution on pyrroles (being an electron-rich heterocycle) happened to be the subject of recent investigations, which has also been covered accentuating their underlying conceptual development. Despite great achievements over the past several years in these areas, many challenges and problems are yet to be solved, which are all discussed in summary and outlook.

5.
Org Biomol Chem ; 19(4): 845-853, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33406174

RESUMO

Annulation reactions of ortho-substituted anilines and arylglyoxylates in the presence of K2S2O8 at 80 °C under metal-free neutral conditions have been investigated, which extended a platform for the tandem synthesis of nitrogen heterocycles. While arylglyoxylic acids are known to undergo decarboxylation to form an acyl radical in the presence of K2S2O8 and used in the Minisci acylation of electron-deficient (hetero)aromatics, their reactions with electron-rich ortho-substituted anilines to form nitrogen heterocycles have recently been studied. Depending upon the experimental conditions used in the reactions, the mechanism of the formation of heterocycles involving reactions of an acyl radical or aryl iminocarboxylic acids has been postulated. Given the subtle understanding of the mechanisms of annulation reactions of 2-substituted anilines and arylglyoxylates in the presence of K2S2O8, an extensive mechanistic investigation was undertaken. In the current study, the various mechanistic pathways including the generation of acyl, imidoyl, aminal, and N,O-hemiketal radicals have been postulated based on different possible decarboxylation modes. Some of the proposed intermediates are supported based on the available analytical data. The protocol uses a single, inexpensive reagent K2S2O8, which offers not only transition-metal-free conditions but also serves as the reagent for the key decarboxylation step. Taken together, this study complements the current development of the annulation reactions of 2-substituted anilines and arylglyoxylates in terms of synthesis and mechanistic understanding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA