Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(9): 543, 2024 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153033

RESUMO

A nanohybrid-modified glassy carbon electrode based on conducting polypyrrole doped with carbon quantum dots (QDs) was developed and used for the electrochemical detection of anti-tissue transglutaminase (anti-tTG) antibodies. To improve the polypyrrole conductivity, carrier mobility, and carrier concentration, four types of carbon nanoparticles were tested. Furthermore, a polypyrrole-modified electrode doped with QDs was functionalized with a PAMAM dendrimer and transglutaminase 2 protein by cross-linking with N-hydroxysuccinimide (NHS)/N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC). The steps of electrode surface modification were surveyed via electrochemical measurements (differential pulse voltammetry (DPV), impedance spectroscopy, and X-ray photoelectron spectroscopy (XPS)). The surface characteristics were observed by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and contact angle measurements. The obtained modified electrode exhibited good stability and repeatability. DPV between - 0.1 and 0.6 V (vs. Ag/AgCl 3 M KCl reference electrode) was used to evaluate the electrochemical alterations that occur after the antibody interacts with the antigen (transglutaminase 2 protein), for which the limit of detection was 0.79 U/mL. Without the use of a secondary label, (anti-tTG) antibodies may be detected at low concentrations because of these modified electrode features.


Assuntos
Dendrímeros , Proteína 2 Glutamina gama-Glutamiltransferase , Pirróis , Pontos Quânticos , Transglutaminases , Humanos , Anticorpos/imunologia , Anticorpos/química , Técnicas Biossensoriais/métodos , Carbono/química , Dendrímeros/química , Técnicas Eletroquímicas/métodos , Eletrodos , Proteínas de Ligação ao GTP/imunologia , Polímeros/química , Pirróis/química , Pontos Quânticos/química , Transglutaminases/imunologia , Transglutaminases/química
2.
Polymers (Basel) ; 16(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38794561

RESUMO

We have developed an innovative thin-film nanocomposite membrane that contains cellulose acetate (CA) with small amounts of TiO2-decorated graphene oxide (GO) (ranging from 0.5 wt.% to 2 wt.%) sandwiched between two polytetrafluoroethylene (PTFE)-like thin films. The PTFE-like films succeeded in maintaining the bulk porosity of the support while increasing the thermal and chemical robustness of the membrane and boosting the catalytic activity of TiO2 nanoparticles. The membranes exhibited a specific chemical composition and bonding, with predominant carbon-oxygen bonds from CA and GO in the bulk, and carbon-fluorine bonds on their PTFE-like coated sides. We have also tested the membranes' photocatalytic activities on azithromycin-containing wastewaters, demonstrating excellent efficiency with more than 80% degradation for 2 wt.% TiO2-decorated GO in the CA-GO-TiO2/PTFE-like membranes. The degradation of the azithromycin formulation occurs in two steps, with reaction rates being correlated to the amount of GO-TiO2 in the membranes.

3.
Membranes (Basel) ; 13(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36837682

RESUMO

In this study, composite membranes based on chitosan (CS), layered double hydroxide (LDH), and diclofenac were prepared via dispersing of LDH and diclofenac (DCF) in the chitosan matrix for gradual delivery of diclofenac sodium. The effect of using LDH in composites was compared to chitosan loaded with diclofenac membrane. LDH was added in order to develop a system with a long release of diclofenac sodium, which is used in inflammatory conditions as an anti-inflammatory drug. The prepared composite membranes were characterized by Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscope Analysis (SEM), X-ray Photoelectron Spectroscopy (XPS), Thermogravimetric Analysis (TGA) and UV-Vis Spectroscopy. The results of the FTIR and XPS analyses confirmed the obtaining of the composite membrane and the efficient incorporation of diclofenac. It was observed that the addition of LDH can increase the thermal stability of the composite membrane and favors the gradual release of diclofenac, highlighted by UV-Vis spectra that showed a gradual release in the first 48 h. In conclusion, the composite membrane based on CS-LDH can be used in potential drug delivery application.

4.
Int J Biol Macromol ; 230: 123162, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36623620

RESUMO

Due to its inherent properties and wide availability, cellulose acetate is an extremely competitive candidate for the production of polymeric membranes. However, for best results in particular applications, membrane modification is required in order to minimize unwanted interactions and introduce novel characteristics to the pristine polymer. In this study, the surface of commercial cellulose acetate membranes was functionalized with 4'-aminobenzo-15-crown-5 ether, using a covalent bonding approach. The main goal was the improvement of the membranes biomineralization ability, thus making them prospective materials for bone regeneration applications. The proposed reaction mechanism was confirmed by XPS and NMR analysis while the presence of the functionalization agents in the membranes structure was showed by ATR FT-IR and Raman spectra. The effects of the functionalization process on the morphology, thermal and mechanical properties of the membranes were studied by SEM, TGA and tensile tests. The obtained results revealed that the cellulose acetate membranes were successfully functionalized with crown ether and provided a good understanding of the interactions that took place between the polymer and the functionalization agents. Moreover, promising results were obtained during the Taguchi biomineralization studies. SEM images, EDX mapping and XRD spectra indicating that the CA-AB15C5 membranes have a superior Ca2+ ions retention ability, this causing an accentuated calcium phosphate deposition on the modified polymeric fibers, compared to the neat CA membrane.


Assuntos
Éteres de Coroa , Osseointegração , Espectroscopia de Infravermelho com Transformada de Fourier , Polímeros/química , Membranas Artificiais
5.
Polymers (Basel) ; 13(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34833276

RESUMO

This study presents a new, revolutionary, and easy method of separating Gd (III). For this purpose, a cellulose acetate membrane surface was modified in three steps, as follows: firstly, with aminopropyl triethoxysylene; then with glutaraldehyde; and at the end, by immobilization of crown ethers. The obtained membranes were characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS), through which the synthesis of membranes with Gd (III) separation properties is demonstrated. In addition, for the Gd (III) separating process, a gadolinium nitrate solution, with applications of moderator poison in nuclear reactors, was used. The membranes retention performance has been demonstrated by inductively coupled plasma mass spectrometry (ICP-MS), showing a separation efficiency of up to 91%, compared with the initial feed solution.

6.
Materials (Basel) ; 14(9)2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33922963

RESUMO

A successful bone-graft-controlled healing entails the development of novel products with tunable compositional and architectural features and mechanical performances and is, thereby, able to accommodate fast bone in-growth and remodeling. To this effect, graphene nanoplatelets and Luffa-fibers were chosen as mechanical reinforcement phase and sacrificial template, respectively, and incorporated into a hydroxyapatite and brushite matrix derived by marble conversion with the help of a reproducible technology. The bio-products, framed by a one-stage-addition polymer-free fabrication route, were thoroughly physico-chemically investigated (by XRD, FTIR spectroscopy, SEM, and nano-computed tomography analysis, as well as surface energy measurements and mechanical performance assessments) after sintering in air or nitrogen ambient. The experiments exposed that the coupling of a nitrogen ambient with the graphene admixing triggers, in both compact and porous samples, important structural (i.e., decomposition of ß-Ca3(PO4)2 into α-Ca3(PO4)2 and α-Ca2P2O7) and morphological modifications. Certain restrictions and benefits were outlined with respect to the spatial porosity and global mechanical features of the derived bone scaffolds. Specifically, in nitrogen ambient, the graphene amount should be set to a maximum 0.25 wt.% in the case of compact products, while for the porous ones, significantly augmented compressive strengths were revealed at all graphene amounts. The sintering ambient or the graphene addition did not interfere with the Luffa ability to generate 3D-channels-arrays at high temperatures. It can be concluded that both Luffa and graphene agents act as adjuvants under nitrogen ambient, and that their incorporation-ratio can be modulated to favorably fit certain foreseeable biomedical applications.

7.
Polymers (Basel) ; 14(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35012170

RESUMO

Heavy metal poisoning is a rare health condition caused by the accumulation of toxic metal ions in the soft tissues of the human body that can be life threatening if left untreated. In the case of severe intoxications, hemodialysis is the most effective method for a rapid clearance of the metal ions from the bloodstream, therefore, the development of hemodialysis membranes with superior metal ions retention ability is of great research interest. In the present study, synthetic polysulfone membranes were modified with reduced graphene oxide functionalized with crown ether, an organic compound with high metal ions complexation capacity. The physico-chemical characteristics of the composite membranes were determined by FT-IR, Raman, XPS and SEM analysis while their efficiency in retaining metal ions was evaluated via ICP-MS analysis. The obtained results showed that the thermal stability of reduced graphene oxide was improved after functionalization with crown ether and that the presence of the carbonaceous filler influenced the membranes morphology in terms of pore dimensions and membrane thickness. Moreover, the ability of Cu2+ ions retention from synthetic feed solution was up to three times higher in the case of the composite membranes compared to the neat ones.

8.
Polymers (Basel) ; 12(5)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455787

RESUMO

A novel hydrogel composite based on gellan gum and graphene oxide (GG/GO) was synthesized, characterized and tested for sorption capacity in this work. The microstructural, thermogravimetric and spectroscopic analysis confirmed the formation of the GG/GO composite. Comparative batch sorption experiments revealed a sorption capacity of the GG/GO composite for Zn (II) ions of approximately 2.3 higher than that of pure GG. The GG/GO composite exhibits a maximum sorption capacity of 272.57 mg/g at a pH of Zn (II) initial solution of 6. Generally, the sorption capacity of the sorbents is approximately 1.5 higher in slightly acidic conditions (pH 6) comparative with that for strong acidic conditions (pH 3). The sorption isotherms revealed that the sorption followed a monolayer/homogenous behavior. The sorption kinetic data were well fitted by the pseudo-second-order kinetic model, and were consistent with those derived from sorption isotherms. The intraparticle diffusion was considered to be the rate-determining step. Two main sorption mechanisms for Zn (II) were identified namely, ion exchange at low pH values, and both ion exchange and chemisorption in weekly acidic conditions.

9.
Materials (Basel) ; 13(2)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936228

RESUMO

This article presents a facile synthesis method used to obtain new composite films based on polylactic acid and micro-structured hydroxyapatite particles. The composite films were synthesized starting from a polymeric solution in chloroform (12 wt.%) in which various concentrations of hydroxyapatite (1, 2, and 4 wt.% related to polymer) were homogenously dispersed using ultrasonication followed by solvent evaporation. The synthesized composite films were morphologically (through SEM and atomic force microscopy (AFM)) and structurally (through FT-IR and Raman spectroscopy) characterized. The thermal behavior of the composite films was also determined. The SEM and AFM analyses showed the presence of micro-structured hydroxyapatite particles in the film's structure, as well as changes in the surface morphology. There was a significant decrease in the crystallinity of the composite films compared to the pure polymer, this being explained by a decrease in the arrangement of the polymer chains and a concurrent increase in the degree of their clutter. The presence of hydroxyapatite crystals did not have a significant influence on the degradation temperature of the composite film.

10.
Materials (Basel) ; 12(1)2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30577550

RESUMO

A high number of studies support the use of mesoporous silica nanoparticles (MSN) as carriers for drug delivery systems due to its high biocompatibility both in vitro and in vivo, its large surface area, controlled pore size and, more than this, its good excretion capacity from the body. In this work we attempt to establish the optimal encapsulation parameters of benzalkonium chloride (BZC) into MSN and further study its drug release. The influence of different parameters towards the drug loading in MSN such as pH, contact time and temperature were considered. The adsorption mechanism of the drug has been determined by using the equilibrium data. The modification process was proved using several methods such as Fourier transform-infrared (FT-IR), ultraviolet-visible (UV-VIS), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). Since MSN shows a lower drug release amount due to the agglomeration tendency, in order to increase MSN dispersion and drug release amount from MSN, two common biocompatible and biodegradable polymers were used as polymer matrix in which the MSN-BZC can be dispersed. The drug release profile of the MSN-BZC and of the synthesized hybrid materials were studied both in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). Polymer-MSN-BZC hybrid materials exhibit a higher drug release percent than the pure MSN-BZC when a higher dispersion is achieved. The dispersion of MSN into the hybrid materials was pointed out in scanning electron microscope (SEM) images. The release mechanism was determined using four mathematic models including first-order, Higuchi, Korsmeyer⁻Peppas and Weibull.

11.
Materials (Basel) ; 10(7)2017 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-28773046

RESUMO

Despite their good biocompatibility and adequate mechanical behavior, the main limitation of Mg alloys might be their high degradation rates in a physiological environment. In this study, a novel Mg-based alloy exhibiting an elastic modulus E = 42 GPa, Mg-1Ca-0.2Mn-0.6Zr, was synthesized and thermo-mechanically processed. In order to improve its performance as a temporary bone implant, a coating based on cellulose acetate (CA) was realized by using the dipping method. The formation of the polymer coating was demonstrated by FT-IR, XPS, SEM and corrosion behavior comparative analyses of both uncoated and CA-coated alloys. The potentiodynamic polarization test revealed that the CA coating significantly improved the corrosion resistance of the Mg alloy. Using a series of in vitro and in vivo experiments, the biocompatibility of both groups of biomaterials was assessed. In vitro experiments demonstrated that the media containing their extracts showed good cytocompatibility on MC3T3-E1 pre-osteoblasts in terms of cell adhesion and spreading, viability, proliferation and osteogenic differentiation. In vivo studies conducted in rats revealed that the intramedullary coated implant for fixation of femur fracture was more efficient in inducing bone regeneration than the uncoated one. In this manner, the present study suggests that the CA-coated Mg-based alloy holds promise for orthopedic aplications.

12.
Biomed Mater Eng ; 24(6): 2249-56, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25226924

RESUMO

Extensively studied nowadays, graphene oxide (GO) has a benefic effect on cell proliferation and differentiation, thus holding promise for bone tissue engineering (BTE) approaches. The aim of this study was not only to design a chitosan 3D scaffold improved with GO for optimal BTE, but also to analyze its physicochemical properties and to evaluate its cytocompatibility and ability to support cell metabolic activity and proliferation. Overall results show that the addition of GO in the scaffold's composition improved mechanical properties and pore formation and enhanced the bioactivity of the scaffold material for tissue engineering. The new developed CHT/GO 3 wt% scaffold could be a potential candidate for further in vitro and in vivo osteogenesis studies and BTE approaches.


Assuntos
Materiais Biocompatíveis/química , Substitutos Ósseos/química , Quitosana/química , Grafite/química , Osteoblastos/fisiologia , Engenharia Tecidual/instrumentação , Alicerces Teciduais , Animais , Apoptose/efeitos dos fármacos , Substitutos Ósseos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quitosana/farmacologia , Chlorocebus aethiops , Análise de Falha de Equipamento , Grafite/farmacologia , Teste de Materiais , Camundongos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Óxidos/química , Óxidos/farmacologia , Desenho de Prótese , Células Vero
13.
Carbohydr Polym ; 102: 813-20, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24507351

RESUMO

Nanocomposites based on chitosan-polyvinyl alcohol (CS-PVA) and graphene oxide (GO) were prepared by casting the stable aqueous mixture of the components. SEM, TEM and X-ray diffraction showed that graphene oxide is largely dispersed on molecular scale within CS-PVA matrix. FTIR investigation indicated the occurrence of some interaction between graphene oxide nanosheets and CS-PVA. The obtained composites are mechanically strong and exhibit improved thermal stability. By addition of 6 wt.% GO within CS-PVA blend, the elastic modulus increased over 200%. The cell viability and proliferation results showed that MC3T3-E1 mouse osteoblastic cells can adhere and developed on the CS-PVA/GO composite films. A significant proliferation potential was displayed by the cells in contact with CS-PVA/GO 6 wt.%. Graphene oxide reinforced CS-PVA with high mechanical and bioactive properties are potential candidates for tissue engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA