Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 5(27): 16772-16778, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32685845

RESUMO

HBx is the smallest gene product of the Hepatitis B virus (HBV) and an oncogenic stimulus in chronic infections leading to liver disease. HBx interacts and interferes with numerous cellular processes, but its modes of action remain poorly understood. It has been invoked that HBx employs nucleotide hydrolysis to regulate molecular pathways or protein-protein interactions. In the present study, we reinvestigate the (d)NTP hydrolysis of recombinant HBx to explore its potential as a biochemical probe for antiviral studies. For our investigations, we employed existing soluble constructs (i.e., GST-HBx, MBP-HBx) and engineered new fusion proteins (i.e., DsbC-HBx, NusA-HBx), which are shown to serve as better systems for in vitro research. We performed mutational scanning of the computationally predicted NTP-binding domain, which includes residues associated with clinical cases. Steady-state and end-point activity assays, in tandem with mass-spectrometric analyses, reveal that the observed hydrolysis of all alleged HBx substrates, ATP, dATP, and GTP, is contingent on the presence of the GroEL chaperone, which preferentially copurifies as a contaminant with GST-HBx and MBP-HBx. Collectively, our findings provide new technical standards for recombinant HBx studies and reveal that nucleotide hydrolysis is not an operant mechanism by which HBx contributes to viral HBV carcinogenesis.

2.
Science ; 342(6161): 991-5, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24114783

RESUMO

The iron-dependent epoxidase HppE converts (S)-2-hydroxypropyl-1-phosphonate (S-HPP) to the antibiotic fosfomycin [(1R,2S)-epoxypropylphosphonate] in an unusual 1,3-dehydrogenation of a secondary alcohol to an epoxide. HppE has been classified as an oxidase, with proposed mechanisms differing primarily in the identity of the O2-derived iron complex that abstracts hydrogen (H•) from C1 of S-HPP to initiate epoxide ring closure. We show here that the preferred cosubstrate is actually H2O2 and that HppE therefore almost certainly uses an iron(IV)-oxo complex as the H• abstractor. Reaction with H2O2 is accelerated by bound substrate and produces fosfomycin catalytically with a stoichiometry of unity. The ability of catalase to suppress the HppE activity previously attributed to its direct utilization of O2 implies that reduction of O2 and utilization of the resultant H2O2 were actually operant.


Assuntos
Antibacterianos/biossíntese , Fosfomicina/biossíntese , Ferroproteínas não Heme/química , Oxirredutases/química , Peroxidases/química , Peróxido de Hidrogênio/química , Ferroproteínas não Heme/classificação , Oxirredutases/classificação , Peroxidases/classificação , Yersinia pseudotuberculosis/enzimologia
3.
J Am Chem Soc ; 135(42): 15801-12, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23987523

RESUMO

Cyanobacterial aldehyde-deformylating oxygenases (ADOs) belong to the ferritin-like diiron-carboxylate superfamily of dioxygen-activating proteins. They catalyze conversion of saturated or monounsaturated C(n) fatty aldehydes to formate and the corresponding C(n-1) alkanes or alkenes, respectively. This unusual, apparently redox-neutral transformation actually requires four electrons per turnover to reduce the O2 cosubstrate to the oxidation state of water and incorporates one O-atom from O2 into the formate coproduct. We show here that the complex of the diiron(II/II) form of ADO from Nostoc punctiforme (Np) with an aldehyde substrate reacts with O2 to form a colored intermediate with spectroscopic properties suggestive of a Fe2(III/III) complex with a bound peroxide. Its Mössbauer spectra reveal that the intermediate possesses an antiferromagnetically (AF) coupled Fe2(III/III) center with resolved subsites. The intermediate is long-lived in the absence of a reducing system, decaying slowly (t(1/2) ~ 400 s at 5 °C) to produce a very modest yield of formate (<0.15 enzyme equivalents), but reacts rapidly with the fully reduced form of 1-methoxy-5-methylphenazinium methylsulfate ((MeO)PMS) to yield product, albeit at only ~50% of the maximum theoretical yield (owing to competition from one or more unproductive pathway). The results represent the most definitive evidence to date that ADO can use a diiron cofactor (rather than a homo- or heterodinuclear cluster involving another transition metal) and provide support for a mechanism involving attack on the carbonyl of the bound substrate by the reduced O2 moiety to form a Fe2(III/III)-peroxyhemiacetal complex, which undergoes reductive O-O-bond cleavage, leading to C1-C2 radical fragmentation and formation of the alk(a/e)ne and formate products.


Assuntos
Aldeído Liases/metabolismo , Aldeídos/metabolismo , Oxigênio/metabolismo , Peróxidos/metabolismo , Aldeído Liases/química , Aldeídos/química , Formiatos/química , Formiatos/metabolismo , Conformação Molecular , Nostoc/enzimologia , Oxigênio/química , Peróxidos/química , Espectroscopia de Mossbauer , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA