Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
ACS Chem Neurosci ; 15(3): 517-526, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38175916

RESUMO

KRM-II-81 (1) is an imidazodiazepine GABAA receptor (GABAAR) potentiator with broad antiseizure efficacy and a low sedative burden. A brominated analogue, DS-II-73 (5), was synthesized and pharmacologically characterized as a potential backup compound as KRM-II-81 moves forward into development. The synthesis from 2-amino-5-bromophenyl)(pyridin-2yl)methanone (6) was processed in five steps with an overall yield of 38% and without the need for a palladium catalyst. GABAAR binding occurred with a Ki of 150 nM, and only 3 of 41 screened binding sites produced inhibition ≥50% at 10 µM, and the potency to induce cytotoxicity was ≥240 mM. DS-II-73 was selective for α2/3/5- over that of α1-containing GABAARs. Oral exposure of plasma and brain of rats was more than sufficient to functionally impact GABAARs. Tonic convulsions in mice and lethality induced by pentylenetetrazol were suppressed by DS-II-73 after oral administration and latencies to clonic and tonic seizures were prolonged. Cortical slice preparations from a patient with pharmacoresistant epilepsy (mesial temporal lobe) showed decreases in the frequency of local field potentials by DS-II-73. As with KRM-II-81, the motor-impairing effects of DS-II-73 were low compared to diazepam. Molecular docking studies of DS-II-73 with the α1ß3γ2L-configured GABAAR showed low interaction with α1His102 that is suggested as a potential molecular mechanism for its low sedative side effects. These findings support the viability of DS-II-73 as a backup molecule for its ethynyl analogue, KRM-II-81, with the human tissue data providing translational credibility.


Assuntos
Epilepsia do Lobo Temporal , Camundongos , Humanos , Ratos , Animais , Epilepsia do Lobo Temporal/tratamento farmacológico , Receptores de GABA-A/metabolismo , Simulação de Acoplamento Molecular , Convulsões/tratamento farmacológico , Oxazóis/farmacologia , Encéfalo/metabolismo , Hipnóticos e Sedativos/uso terapêutico , Redes Neurais de Computação , Anticonvulsivantes/farmacologia
2.
Can J Physiol Pharmacol ; 102(3): 206-217, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37909404

RESUMO

Hypotensive influences of benzodiazepines and other GABAA receptor ligands, recognized in clinical practice, seem to stem from the existence of "vascular" GABAA receptors in peripheral blood vessels, besides any mechanisms in the central and peripheral nervous systems. We aimed to further elucidate the vasodilatatory effects of ligands acting through GABAA receptors. Using immunohistochemistry, the rat aortic smooth muscle layer was found to express GABAA γ2 and α1-5 subunit proteins. To confirm the role of "vascular" GABAA receptors, we investigated the vascular effects of standard benzodiazepines, midazolam, and flumazenil, as well as the novel compound MP-III-058. Using two-electrode voltage clamp electrophysiology and radioligand binding assays, MP-III-058 was found to have modest binding but substantial functional selectivity for α5ß3γ2 over other αxß3γ2 GABAA receptors. Tissue bath assays revealed comparable vasodilatory effects of MP-III-058 and midazolam, both of which at 100 µmol/L concentrations had efficacy similar to prazosin. Flumazenil exhibited weak vasoactivity per se, but significantly prevented the relaxant effects of midazolam and MP-III-058. These studies indicate the existence of functional GABAA receptors in the rat aorta, where ligands exert vasodilatory effects by positive modulation of the benzodiazepine binding site, suggesting the potential for further quest for leads with optimized pharmacokinetic properties as prospective adjuvant vasodilators.


Assuntos
Flumazenil , Midazolam , Animais , Ratos , Midazolam/farmacologia , Flumazenil/farmacologia , Benzodiazepinas/farmacologia , Aorta , Receptores de GABA-A , Ácido gama-Aminobutírico
3.
Access Microbiol ; 5(8)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37691839

RESUMO

Introduction: The human oral cavity comprises various niches such as teeth, gingiva, tongue, soft and hard palate, and various dental prostheses, all inhabited by different bacterial species. Although more than 600 taxa belong to the oral cavity, identifying Staphylococcus arlettae , an incompletely understood bacterium, has been rare. Methods: Three patients who underwent periodontal flap surgeries were reported with the incidental finding of S. arlettae associated with the intra-oral sutures placed. Environmental sampling was performed, to establish the exact source of this bacterium. Results: Staphylococcus arlettae was isolated in three patients' intra-oral sutures. All environmental samples were negative for the presence of the bacterium. Conclusion: . To this date, no studies have identified such an occurrence of Staphylococcus arlettae with intra-oral sutures. Its identification in association with foreign materials, such as sutures, can be considered a potential for surgical site infections and requires further investigation.

4.
J Pharmacol Exp Ther ; 385(1): 50-61, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36746611

RESUMO

To provide back-up compounds to support the development of the GABAA receptor (GABAAR) potentiator KRM-II-81, three novel analogs were designed: replacing the pyridinyl with 2'-Cl-phenyl (FR-II-60), changing the positions of the N and O atoms in the oxazole ring with addition of an ethyl group (KPP-III-34 and KPP-III-51), or substituting a Br atom for the ethynyl of KRM-II-81 (KPP-III-34). The compounds bound to brain GABAARs. Intraperitoneal administration of FR-II-60 and KPP-III-34 produced anticonvulsant activity in mice [maximal electroshock (MES)-induced seizures or 6 Hz-induced seizures], whereas KPP-III-51 did not. Although all compounds were orally bioavailable, structural changes reduced the plasma and brain (FR-II-60 and KPP-III-51) exposures relative to KRM-II-81. Oral administration of each compound produced dose-dependent increases in the latency for both clonic and tonic seizures and the lethality induced by pentylenetetrazol (PTZ) in mice. Since KPP-III-34 produced the highest brain area under the curve (AUC) exposures, it was selected for further profiling. Oral administration of KPP-III-34 suppressed seizures in corneal-kindled mice, hippocampal paroxysmal discharges in mesial temporal lobe epileptic mice, and PTZ-induced convulsions in rats. Only transient sensorimotor impairment was observed in mice, and doses of KPP-III-34 up to 500 mg/kg did not produce impairment in rats. Molecular docking studies demonstrated that all compounds displayed a reduced propensity for binding to α1His102 compared with the sedating compound alprazolam; the bromine-substituted KPP-III-34 achieved the least interaction. Overall, these findings document the oral bioavailability and anticonvulsant efficacy of three novel analogs of KRM-II-81 with reduced sedative effects. SIGNIFICANCE STATEMENT: A new non-sedating compound, KRM-II-81, with reduced propensity for tolerance is moving into clinical development. Three new analogs were orally bioavailable, produced anticonvulsant effects in rodents, and displayed low sensorimotor impairment. KPP-III-34 demonstrated efficacy in models of pharmacoresistant epilepsy. Docking studies demonstrated a low propensity for compound binding to the α1His102 residue implicated in sedation. Thus, three additional structures have been added to the list of non-sedating imidazodiazepine anticonvulsants that could serve as backups in the clinical development of KRM-II-81.


Assuntos
Anticonvulsivantes , Epilepsia , Ratos , Camundongos , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/química , Simulação de Acoplamento Molecular , Convulsões/tratamento farmacológico , Convulsões/induzido quimicamente , Oxazóis/farmacologia , Epilepsia/tratamento farmacológico , Receptores de GABA-A/metabolismo , Pentilenotetrazol , Eletrochoque
5.
Drug Dev Res ; 84(3): 527-531, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36748904

RESUMO

A series of imidazodiazepines has been developed that possess reduced sedative liabilities but retain efficacy in anticonvulsant screening models. The latest of these compounds, (5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazole[1,5-α][1,4]diazepin-3-yl) oxazole known as KRM-II-81) is currently awaiting advancement into the clinic. A deuterated structural analog (D5-KRM-II-81) was made as a potential backup compound and studied here in comparison to KRM-II-81. In the present study, both compounds significantly prevented seizures in mice induced by 6 Hz (44 mA) electrical stimulation without significantly altering motoric function on a rotarod after intraperitoneal administration. Both compounds also significantly prevented clonic seizures, tonic seizures, and lethality induced by pentylenetetrazol in mice when given orally. D5-KRM-II-81 had a slightly longer duration of action against clonic and tonic seizures than KRM-II-81. Oral administration of 100 mg/kg of either KRM-II-81 or D5-KRM-II-81 was significantly less disruptive of sensorimotor function in mice than diazepam (5 mg/kg, p.o.). The present report documents that D5-KRM-II-81 represents another in this series of imidazodiazepines with anticonvulsant activity at doses that do not impair sensorimotor function.


Assuntos
Anticonvulsivantes , Diazepam , Camundongos , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Diazepam/farmacologia , Diazepam/uso terapêutico , Oxazóis , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico
6.
ACS Omega ; 8(2): 2315-2327, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687113

RESUMO

A demand for functional materials that are capable of tailoring light-emissive properties has apparently been rising nowadays substantially for their utilization in organic optoelectronic devices. Motivated by such promising characteristics, we present highly emissive as well as aggregation-induced emission (AIE) electroluminescent composite systems composed of a nematic liquid crystals (NLC) blended with polyethylene-functionalized gold nanospheres (GNSs). The major findings of this study include superior electro-optical properties such as threshold voltage reduction by around 24%. The fall time is reduced by 11.50, 30.33, 49.33, and 63.17% respectively, and rotational viscosity is reduced by 13.86, 32.77, 36.97, and 49.58% for 5.0 × 1011, 5.0 × 1012, 2.5 × 1013, and 5.0 × 1013 number of GNS-blended liquid crystal (LC) cells. The increased UV absorbance and greatly enhanced luminescence properties have been attributed to surface plasmon resonance near the surface of GNSs and AIE effect risen due to agglomeration of the capping agent with the NLC molecules respectively, and these characteristics make them suitable for new-age display applications.

7.
NPJ Precis Oncol ; 7(1): 11, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36693944

RESUMO

Targeted therapies, such as endocrine therapies (ET), can exert selective pressure on cancer cells and promote adaptations that confer treatment resistance. In this study, we show that ET resistance in breast cancer drives radiation resistance through reprogramming of DNA repair pathways. We also show that pharmacological bromodomain and extraterminal domain inhibition reverses pathological DNA repair reprogramming in ET-resistant breast tumors and overcomes resistance to radiation therapy.

8.
Anticancer Res ; 43(1): 85-95, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36585194

RESUMO

BACKGROUND/AIM: To evaluate the feasibility of syngeneic mouse models of breast cancer by analyzing the efficacy of immune checkpoint inhibitors (ICIs) and potential predictive biomarkers. MATERIALS AND METHODS: To establish the murine triple-negative breast cancer (TNBC) models, JC, 4T1, EMT6, and E0771 cells were subcutaneously implanted into female syngeneic mice. When the tumor reached 50-100 mm3, each mouse model was divided into a treatment (using a murine PD-1 antibody) and a no-treatment control group. The treatment group was further divided into the responder and non-responder groups. Potential predictive biomarkers were evaluated by analyzing serum cytokines, peripheral blood T cells and tumor infiltrating immune cells. RESULTS: The EMT6 model showed the highest tumor response rate (54%, 6/11) of the syngeneic models: 4T1 (45%, 5/11), JC (40%, 4/10), or E0771 (23%, 3/13). Early changes in tumor size at 7 days post-PD-1 inhibitor treatment predicted the final efficacy of the PD-1 inhibitor. Peripheral blood CD8+ and CD4+ T cells with or without Ki67 expression at 7 days post-PD-1 inhibitor treatment were higher in the finally designated responder group than in the non-responder group. At the time of sacrifice, analyses of tumor infiltrating lymphocytes consistently supported these results. We also demonstrated that retro-orbital blood sampling procedures (baseline, 7 days post-treatment, time of sacrifice) were safe for serum cytokine analyses, suggesting that our preclinical platform may be used for biomarker research using serum cytokines. CONCLUSION: Our syngeneic mouse model of TNBC is a feasible preclinical platform to evaluate ICI efficacy combined with other drugs and predictive biomarkers in the screening process of immune-oncology drug development.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Animais , Camundongos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias de Mama Triplo Negativas/patologia , Modelos Animais de Doenças , Biomarcadores , Citocinas/uso terapêutico
9.
Cureus ; 14(11): e31156, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36483892

RESUMO

Bone resorption following tooth loss is an obvious, continuous, and unpredictable process, which poses one of the greatest challenges in implant placement. The posterior regions of the jaws show more resorption compared to the anterior regions, with the mandible being affected more. Augmentation of the narrow alveolar ridge has been done using various techniques. The alveolar ridge split technique (ARST) is frequently used for the horizontal augmentation of the narrow ridge. In this case report, a 47-year-old female patient who had partial edentulism on the lower left jaw region associated with a narrow alveolar ridge was treated using the ridge split technique. A piezosurgical unit was used for splitting the ridge, followed by simultaneous implant placement. This alveolar ridge split technique is considered to be more predictable, reliable, and successful as compared to other techniques such as autogenous onlay bone graft and guided bone regeneration.

10.
ACS Omega ; 7(31): 27550-27559, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35967038

RESUMO

Imidazodiazepine (5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazole[1,5-α][1,4]diazepin-3-yl) oxazole or KRM-II-81) is a potentiator of GABAA receptors (a GABAkine) undergoing preparation for clinical development. KRM-II-81 is active against many seizure and pain models in rodents, where it exhibits improved pharmacological properties over standard-of-care agents. Since salts can be utilized to create opportunities for increased solubility, enhanced absorption, and distribution, as well as for efficient methods of bulk synthesis, a hydrochloride salt of KRM-II-81 was prepared. KRM-II-81·HCl was produced from the free base with anhydrous hydrochloric acid. The formation of the monohydrochloride salt was confirmed by X-ray crystallography, as well as 1H NMR and 13C NMR analyses. High water solubility and a lower partition coefficient (octanol/water) were exhibited by KRM-II-81·HCl as compared to the free base. Oral administration of either KRM-II-81·HCl or the free base resulted in high concentrations in the brain and plasma of rats. Oral dosing in mice significantly increased the latency to both clonic and tonic convulsions and decreased pentylenetetrazol-induced lethality. The increased water solubility of the HCl salt enables intravenous dosing and the potential for higher concentration formulations compared with the free base without impacting anticonvulsant potency. Thus, KRM-II-81·HCl adds an important new compound to facilitate the development of these imidazodiazepines for clinical evaluation.

11.
Pharmacol Biochem Behav ; 219: 173446, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35987339

RESUMO

Pharmacological modulation of glutamate has long been considered to be of immense therapeutic utility. The metabotropic glutamate receptors (mGluRs) are potential targets for safely altering glutamate-driven excitation. Data support the potential therapeutic use of mGluR modulators in the treatment of anxiety, depression, schizophrenia, and other psychiatric disorders, pain, epilepsy, as well as neurodegenerative and neurodevelopmental disorders. For each of the three mGluR groups, compounds have been constructed that produce either potentiation or functional blockade. PET ligands for mGlu5Rs have been studied in a range of patient populations and several mGlu5R antagonists have been tested for potential efficacy in patients including mavoglurant, diploglurant, basimglurant, GET 73, and ADX10059. Efficacy with mGlu5R antagonists has been reported in trials with patients with gastroesophageal reflux disease; data from patients with Parkinson's disease or Fragile X syndrome have not been as robust as hoped. Fenobam was approved for use as an anxiolytic prior to its recognition as an mGlu5R antagonist. mGlu2/3R agonists (pomaglumated methionil) and mGlu2R agonists (JNJ-40411813, AZD 8529, and LY2979165) have been studied in patients with schizophrenia with promising but mixed results. Antagonists of mGlu2/3Rs (decoglurant and TS-161) have been studied in depression where TS-161 has advanced into a planned Phase 2 study in treatment-resistant depression. The Group III mGluRs are the least developed of the mGluR receptor targets. The mGlu4R potentiator, foliglurax, did not meet its primary endpoint in patients with Parkinson's disease. Ongoing efforts to develop mGluR-targeted compounds continue to promise these glutamate modulators as medicines for psychiatric and neurological disorders.


Assuntos
Ansiolíticos , Doença de Parkinson , Receptores de Glutamato Metabotrópico , Esquizofrenia , Ansiolíticos/uso terapêutico , Glutamatos/uso terapêutico , Humanos , Esquizofrenia/tratamento farmacológico
12.
ACS Nano ; 16(8): 12061-12072, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35868016

RESUMO

Carbon-based nanomaterials (CBNs) are often used for potential agricultural applications. Since CBNs applied to plants can easily enter plant organs and reach the human diet, the consequences of the introduction of CBNs into the food chain need to be investigated. We created a platform for a comprehensive investigation of the possible health risks of multiwalled carbon nanotubes (CNTs) accumulated in the organs of exposed tomato plants. Quantification and visualization of CNTs absorbed by plant organs were determined by microwave-induced heating (MIH) and radio frequency (RF) heating methods. Feeding mice with CNT-contaminated tomatoes showed an absence of toxicity for all assessed animal organs. The amount of CNTs accumulated inside the organs of mice fed with CNT-containing fruits was assessed by an RF heating technique and was found to be negligible. Our work provides the experimental evidence that the amount of CNTs accumulated in plant organs as a result of nanofertilization is not sufficient to induce toxicity in mice.


Assuntos
Nanotubos de Carbono , Solanum lycopersicum , Humanos , Camundongos , Animais , Nanotubos de Carbono/toxicidade , Plantas , Agricultura , Medição de Risco
13.
Molecules ; 27(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35268836

RESUMO

The unification of the general synthetic strategy regarding the important and emerging group of C-19 methyl-substituted sarpagine/macroline alkaloids has culminated in the completion of the total synthesis of several bioactive alkaloids. Key transformations include an ACE-Cl mediated late-stage N(4)-demethylation and an anhydrous acid-mediated intramolecular quaternary hemiaminal formation between a tertiary amine and an aldehyde function to allow efficient access to several biologically important alkaloids from this group. Herein, the enantiospecific total synthesis of the first known sarpagine/macroline alkaloid with NF-κB inhibitory activity, N(4)-methyltalpinine (as a chloride salt), as well as the anticancer alkaloids talpinine, O-acetyltalpinine, and macrocarpines F-G, are described.


Assuntos
Alcaloides Indólicos
14.
Bioorg Med Chem Lett ; 62: 128637, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35218882

RESUMO

The pharmacological actions exerted by benzodiazepines are dependent on the discrete α protein subunits of the γ-aminobutyric acid type A receptor (GABAA R). Recent developments via a cryo-EM structure of the α1ß3γ2L GABAA R ion channel provide crucial insights into ligand efficacy and binding affinity at this subtype. We investigated the molecular interactions of diazepam and alprazolam bound GABAA R structures (6HUP and 6HUO) to determine key binding interaction domains. A halogen bond between the chlorine atoms of diazepam and alprazolam with the group on the backbone of the α1 histidine amino acid 102 is important to the positive allosteric modulatory actions of diazepam and alprazolam in the α1ß3γ2L GABAA R ion channel. In order to gain insight into α subtype selectivity we designed and synthesized close structural analogs of diazepam and alprazolam. These compounds were then docked into the recently publish cryo-EM structures of GABAA Rs (6HUP and 6HUO). This modeling along with radio-ligand binding data resulted in the conclusion that the non-classical bioisosteric replacement of the chlorine atom at C7 with an ethinyl group (compound 5) resulted in an 11-fold gain in α5 binding selectivity over the α1 subtype. Moreover, the potency of compound 5 resulted in a ligand with less sedation than diazepam, while still maintaining the same anxiolytic potency. These modeling data extend our understanding of the structural requirements for α-subtype-selective compounds that can be utilized to achieve improved medical treatments. It is clear that the ethinyl group in place of a halogen atom decreases the affinity and efficacy of benzodiazepines and imidazodiazepines at α1 subtypes, which results in less sedation and ataxia.


Assuntos
Benzodiazepinas , Receptores de GABA-A , Alprazolam , Benzodiazepinas/química , Cloro/metabolismo , Diazepam/farmacologia , Canais Iônicos , Ligantes , Simulação de Acoplamento Molecular , Receptores de GABA/metabolismo , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/farmacologia
15.
Biopharm Drug Dispos ; 43(2): 66-75, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35194800

RESUMO

The imidazodiazepine, (5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo [f]imidazole[1,5-α][1,4]diazepin-3-yl) oxazole or KRM-II-81) is a new α2/3-selective GABAkine (gamma aminobutyric acid A receptor potentiator) with anticonvulsant, anxiolytic, and antinociceptive activity in preclinical models. Reducing metabolism was utilized as a means of potentially extending the half-life of KRM-II-81. In vitro and in vivo studies were conducted to evaluate metabolic liabilities. Incubation of KRM-II-81 in hepatocytes revealed sites of potential metabolism on the oxazole and the diazepine rings. These sites were targeted in the design of a deuterated analog (D5-KRM-II-81) that could be evaluated as a potentially longer-acting analog. In contrast to computer predictions, peak plasma concentrations of D5-KRM-II-81 in rats were not significantly greater than those produced by KRM-II-81 after oral administration. Furthermore, brain disposition of KRM-II-81 was higher than that of D5-KRM-II-81. The half-life of the two compounds in either plasma or brain did not statistically differ from one another but the tmax for D5-KRM-II-81 occurred slightly earlier than for KRM-II-81. Non-metabolic considerations might be relevant to the lack of increases in exposure by D5-KRM-II-81. Alternative sites of metabolism on KRM-II-81, not targeted by the current deuteration process, are also possible. Despite its lack of augmented exposure, D5-KRM-II-81, like KRM-II-81, significantly prevented seizures induced by pentylenetetrazol when given orally. The present findings introduce a new orally active anticonvulsant GABAkine, D5-KRM-II-81.


Assuntos
Antibióticos Antituberculose , Anticonvulsivantes , Animais , Anticonvulsivantes/farmacologia , Oxazóis/metabolismo , Ratos , Receptores de GABA-A/metabolismo
16.
Cancers (Basel) ; 14(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35008374

RESUMO

Breast cancer remains a leading cancer burden among women worldwide. Acquired resistance of cyclin-dependent kinase (CDK) 4/6 inhibitors occurs in almost all hormone receptor (HR)-positive subtype cases, comprising 70% of breast cancers, although CDK4/6 inhibitors combined with endocrine therapy are highly effective. CDK4/6 inhibitors are not expected to cooperate with cytotoxic chemotherapy based on the basic cytotoxic chemotherapy mode of action that inhibits rapidly proliferating cells. The palbociclib-resistant preclinical model developed in the current study investigated whether the combination of abemaciclib, CDK4/6 inhibitor with eribulin, an antimitotic chemotherapy could be a strategy to overcome palbociclib-resistant HR-positive breast cancer. The current study demonstrated that sequential abemaciclib treatment following eribulin synergistically suppressed CDK4/6 inhibitor-resistant cells by inhibiting the G2/M cell cycle phase more effectively. The current study showed the significant association of the pole-like kinase 1 (PLK1) level and palbociclib resistance. Moreover, the cumulative PLK1 inhibition in the G2/M phase by each eribulin or abemaciclib proved to be a mechanism of the synergistic effect. The synergistic antitumor effect was also supported by in vivo study. The sequential combination of abemaciclib following eribulin merits further clinical trials to overcome resistance to CDK4/6 inhibitors in HR-positive breast cancer.

18.
Pharmacol Biochem Behav ; 213: 173321, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35041859

RESUMO

GABAkines, or positive allosteric modulators of γ-aminobutyric acid-A (GABAA) receptors, are used for the treatment of anxiety, epilepsy, sleep, and other disorders. The search for improved GABAkines, with reduced safety liabilities (e.g., dependence) or side-effect profiles (e.g., sedation) constituted multiple discovery and development campaigns that involved a multitude of strategies over the past century. Due to the general lack of success in the development of new GABAkines, there had been a decades-long draught in bringing new GABAkines to market. Recently, however, there has been a resurgence of efforts to bring GABAkines to patients, the FDA approval of the neuroactive steroid brexanolone for post-partum depression in 2019 being the first. Other neuroactive steroids are in various stages of clinical development (ganaxolone, zuranolone, LYT-300, Sage-324, PRAX 114, and ETX-155). These GABAkines and non-steroid compounds (GRX-917, a TSPO binding site ligand), darigabat (CVL-865), an α2/3/5-preferring GABAkine, SAN711, an α3-preferring GABAkine, and the α2/3-preferring GABAkine, KRM-II-81, bring new therapeutic promise to this highly utilized medicinal target in neurology and psychiatry. Herein, we also discuss possible conditions that have enabled the transition to a new age of GABAkines. We highlight the pharmacology of KRM-II-81 that has the most preclinical data reported. KRM-II-81 is the lead compound in a new series of orally bioavailable imidazodiazepines entering IND-enabling safety studies. KRM-II-81 has a preclinical profile predicting efficacy against pharmacoresistant epilepsies, traumatic brain injury, and neuropathic pain. KRM-II-81 also produces anxiolytic- and antidepressant-like effects in rodent models. Other key features of the pharmacology of this compound are its low sedation rate, lack of tolerance development, and the ability to prevent the development of seizure sensitization.


Assuntos
GABAérgicos/uso terapêutico , Transtornos Mentais/tratamento farmacológico , Doenças do Sistema Nervoso/tratamento farmacológico , Oxazóis/uso terapêutico , Receptores de GABA/metabolismo , Animais , Ansiolíticos/uso terapêutico , Anticonvulsivantes/uso terapêutico , Antidepressivos/uso terapêutico , Ansiedade/tratamento farmacológico , Epilepsia/tratamento farmacológico , GABAérgicos/farmacologia , Agonistas de Receptores de GABA-A/uso terapêutico , Humanos , Neuralgia/tratamento farmacológico , Oxazóis/farmacologia , Receptores de GABA-A/metabolismo , Convulsões/tratamento farmacológico
19.
Sci Rep ; 11(1): 13730, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215789

RESUMO

With progressive climate change and the associated increase in mean temperature, heat stress tolerance has emerged as one of the key traits in the product profile of the maize breeding pipeline for lowland tropics. The present study aims to identify the genomic regions associated with heat stress tolerance in tropical maize. An association mapping panel, called the heat tolerant association mapping (HTAM) panel, was constituted by involving a total of 543 tropical maize inbred lines from diverse genetic backgrounds, test-crossed and phenotyped across nine locations in South Asia under natural heat stress. The panel was genotyped using a genotyping-by-sequencing (GBS) platform. Considering the large variations in vapor pressure deficit (VPD) at high temperature (Tmax) across different phenotyping locations, genome-wide association study (GWAS) was conducted separately for each location. The individual location GWAS identified a total of 269 novel significant single nucleotide polymorphisms (SNPs) for grain yield under heat stress at a p value of < 10-5. A total of 175 SNPs were found in 140 unique gene models implicated in various biological pathway responses to different abiotic stresses. Haplotype trend regression (HTR) analysis of the significant SNPs identified 26 haplotype blocks and 96 single SNP variants significant across one to five locations. The genomic regions identified based on GWAS and HTR analysis considering genomic region x environment interactions are useful for breeding efforts aimed at developing heat stress resilient maize cultivars for current and future climatic conditions through marker-assisted introgression into elite genetic backgrounds and/or genome-wide selection.


Assuntos
Genoma de Planta , Termotolerância/genética , Zea mays/genética , Alelos , Estudo de Associação Genômica Ampla , Haplótipos , Clima Tropical
20.
Molecules ; 26(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200196

RESUMO

Bisindoles are structurally complex dimers and are intriguing targets for partial and total synthesis. They exhibit stronger biological activity than their corresponding monomeric units. Alkaloids, including those containing C-19 methyl-substitution in their monomeric units, their synthetic derivatives, and their mismatched pairs can be attractive targets for synthesis and may unlock better drug targets. We herein discuss the isolation of bisindoles from various Alstonia species, their bioactivity, putative biosynthesis, and synthesis. The total synthesis of macralstonidine, macralstonine, O-acetylmacralstonine, and dispegatrine, as well as the partial synthesis of alstonisidine, villalstonine, and macrocarpamine are also discussed in this review. The completion of the total synthesis of pleiocarpamine by Sato et al. completes the formal synthesis of the latter two bisindoles.


Assuntos
Alcaloides/química , Alstonia/química , Humanos , Alcaloides Indólicos/química , Oxindóis/química , Preparações Farmacêuticas/química , Compostos de Espiro/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA