Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7955, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575610

RESUMO

Efficient separation of electron-hole pairs remains pivotal in optimizing photogenerated carrier functionality across diverse catalytic and optoelectronic systems. This study presents the fabrication of a novel hollow direct Z-scheme photocatalyst, ZnO/TiO2. A thorough analysis encompassing various techniques such as Ultraviolet-Visible Spectroscopy (UV-Vis), X-ray Diffraction (XRD), Transmission electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FT-IR), Thermogravimetric Analysis (TGA), and Energy-Dispersive X-ray Spectroscopy (EDX) provided detailed insights into the complex material characteristics of the ZnO/TiO2 heterojunction catalyst. The findings revealed coexisting anatase TiO2 and wurtzite ZnO phases, each retaining distinct attributes within the nanocomposites (NCs) structure. The study showcased the photocatalytic efficacy of ZnO/TiO2-NCs in decomposing Methylene Blue and Acridine Orange under UV irradiation, correlated with their underlying structures. Enhanced degradation of these dyes resulted from the establishment of a direct Z-scheme heterojunction between ZnO and TiO2. Employing Density Functional Theory (DFT) using Quantum ESPRESSO, this research analyzed phase diagrams and band structures, elucidating electronic properties and structural correlations. The study characterized a ZnO/TiO2 composite, revealing a band gap of 3.1-3.3 eV through UV-Visible spectroscopy and confirming its formation without impurity phases via XRD analysis. TEM and EDX showed uniform element dispersion (Zn: 27%, Ti: 29.62%, C: 5.03%, O: 38.35%). Computational analysis using DFT indicated a reduction in stable phases with increasing temperature. Enhanced dye degradation was observed (MB: 88.9%, AO: 84%), alongside significant antibacterial activity. In the future we predict that research will focus on development of scaled up production and photocatalytic activity through surface modification, while unveiling mechanistic insights and environmental applicability for multifunctional use in water treatment and antibacterial applications, leading to further advancement of the field.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37468775

RESUMO

Present investigation demonstrates the development and characterization of strontium titanate (SrTiO3) doped biochar nanohybrid photocatalysts. Biochar nanohybrid was synthesized using an ultrasonic-assisted dispersion technique, which involved dispersing SrTiO3 nanoparticles into activated biochar at a weight ratio of 1:2 (w/w) under ambient conditions. The development of the biochar nanohybrid was verified through a comprehensive analysis of their spectral, microstructural, thermal, electrical, and electrochemical properties. The scanning electron microscopy analysis reveals a surface-associated multiphase morphology of the biochar nanohybrid, attributed to the uniform distribution of SrTiO3 within the activated biochar matrix. Biochar nanohybrid exhibited a reduced optical band gap of 2.77 eV, accompanied by a crystallite size of 32.45. Thermogravimetric analysis revealed the thermal stability of the biochar nanohybrid, as evidenced by a char residue of 70.83% at 1000 °C. The working electrodes derived from biochar nanohybrid have exhibited ohmic behavior and displayed a significantly enhanced DC conductivity (mS/cm) of 1.13, surpassing that of activated biochar (0.53) and SrTiO3 (0.62) at 100 V. The developed biochar nanohybrid were employed for the degradation of congo red dye by exposing the dye solution to photocatalytic plates. These photocatalytic plates were prepared by coating biochar nanohybrid onto glass plates using epoxy-based reactive binders for secure binding. The photodegradation of congo red was evaluated through cyclic voltammetric analysis in a 0.1 M KCl solution at pH 8.0, resulting in an impressive 99.95% photocatalytic efficiency in degrading a congo red solution (50 mg/L). This study presents a novel approach for the fabrication of biochar nanohybrid-derived photocatalytic plates, offering high photocatalytic efficiency for the degradation of congo red dye.

3.
Eur J Med Chem ; 123: 476-486, 2016 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-27494165

RESUMO

A new series of oxazoline-pyrazoline hybrids (4a-p) were synthesized by condensation reaction of substituted oxazoline based chalcones (3a-m) and substituted hydrazines in methanol. Some of the compounds exhibited promising in vitro antimalarial activity for chloroquine sensitive CQ(S) (3D7) strain and chloroquine resistant CQ(R) (RKL9) strain. The most potent analogue 4i (IC50 0.322 µg/ml) exhibited significant in vivo antimalarial potential against Plasmodium berghei mouse model. The stable complex of 4i with hematin (1:1 stoichiometry) suggests that heme may be one possible target for these hybrid compounds. The study has revealed potential of title compounds as lead for the development of antimalarial agents.


Assuntos
Antimaláricos/síntese química , Antimaláricos/farmacologia , Desenho de Fármacos , Pirazóis/síntese química , Pirazóis/farmacologia , Animais , Antimaláricos/química , Antimaláricos/toxicidade , Chalconas/química , Técnicas de Química Sintética , Chlorocebus aethiops , Feminino , Concentração Inibidora 50 , Camundongos , Plasmodium berghei/efeitos dos fármacos , Pirazóis/química , Pirazóis/toxicidade , Ratos , Células Vero
4.
Indian J Pharm Sci ; 77(2): 243-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26009661

RESUMO

In the present study, ethanol and aqueous extracts of leaf galls of Cinnamomum verum were prepared to evaluate the antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl free radical scavenging assay and superoxide radical scavenging assay with ascorbic acid as a standard, and analgesic activity by tail immersion test and acetic acid-induced writhing test methods using diclofenac sodium as the reference drug. Swiss albino mice maintained under standard laboratory conditions were used for analgesic tests. In the 2,2-diphenyl-1-picrylhydrazyl assay it was found that the aqueous and the ethanol extract possessed almost equal capacity to inhibit free radicals (IC50=13.3 and 13.53 µg/ml) but found less than ascorbic acid (IC50=9.96 µg/ml). And in superoxide assay the ethanol extract was found to be more potent in scavenging super oxide radicals when compared to ascorbic acid and the aqueous extract (IC50=237.1 and 197.8 µg/ml) with the IC50=119.7 µg/ml. For analgesic activity, ethanol extract showed the maximum time required for response against thermal stimuli (6.75±0.47 s) and maximum % of writhing inhibition (44.57%) when compared to aqueous extract (5.25±0.48 s and 32.61%), whereas diclofenac showed response in 7.25±0.25 s 67.39% inhibition in tail immersion and writhing tests, respectively. These results demonstrate that the ethanol extracts of leaf galls possessed high antioxidant and analgesic activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA