Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Vet Pharmacol Ther ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120127

RESUMO

In response to the heightened risk of bacterial diseases in fish farms caused by increased demand for fish consumption and subsequent overcrowding, researchers are currently investigating the efficacy and residue management of oxolinic acid (OA) as a treatment for bacterial infections in fish. This research is crucial for gaining a comprehensive understanding of the pharmacokinetics of OA. The present study investigates pharmacokinetics of OA in juvenile rainbow trout. The fish were given a 12 mg kg-1 dose of OA through their feed, and tissue samples were collected of the liver, kidney, gill, intestine, muscle, and plasma for analysis using LC-MS/MS. The highest concentrations of the drug were found in the gill (4096.55 µg kg-1) and intestine (11592.98 µg kg-1), with significant absorption also seen in the liver (0.36 L/h) and gill (0.07 L/h) (p < 0.05). The liver (0.21 L/h) and kidney (0.03 L/h) were found to be the most efficient (p < 0.05) at eliminating the drug. The study also confirmed the drug antimicrobial effectiveness against several bacterial pathogens, including Shewanella xiamenensis (0.25 µg mL-1), Lactococcus garvieae (1 µg mL-1), and Chryseobacterium aquaticum (4 µg mL-1). The study concludes significant variations among different fish tissues, with higher concentrations and longer half-lives observed in the kidney and intestine. The lowest MIC value recorded against major bacterial pathogens demonstrated its therapeutic potential in aquaculture. It also emphasizes the importance of understanding OA pharmacokinetics to optimize antimicrobial therapy in aquaculture.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38767315

RESUMO

Fish pigmentation study can reveal understandings in dermatological research based on functional genomics. Cultured ornamental fish becomes dull coloured and antityrosinase activity through sesame seed may enhance skin colour, which has not been studied. Botia dario is an indigenous fish, having ornamental and aesthetic value and can be studied as a model for fish pigmentation genetics. In this study, fish specimens were fed with 15% marigold petal meal along with 5, 10 and 15% w/w sesame seed in diet. Pigmentation genes, that is, tyr, tyrp1a, asip1, gnaq, kitlga, mc1r, mitf, pax7a, rab38, slc7a11, sox9a, sox10, csf1r, bcdo2 and gsta2 in skin and immunogens, that is, il20, nramp, tlr9 and trail in kidney were studied. Gene expression in tissues revealed enhanced pigmentation and immunity as well as the role of tyr, tyrp1a and asip1 in pigmentation. Immunogenes and blood parameters confirmed the best pigmentation diet. Colorimetric analysis also showed the enhancement of pigmentation. Insights from sesame seed and marigold-induced antityrosinase effects will be applied in aquaculture to develop natural, dietary formulations that will enhance pigmentation in ornamental fish, leading to improved skin colour and market value.

3.
Gels ; 10(5)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38786256

RESUMO

To determine the evolution of microbial community and microbial shift under anaerobic processes, this study investigates the use of denaturing gradient gel electrophoresis (DGGE). In the DGGE, short- and medium-sized DNA fragments are separated based on their melting characteristics, and this technique is used in this study to understand the dominant bacterial community in mesophilic and thermophilic anaerobic digestion processes. Dairy manure is known for emitting greenhouse gases (GHGs) such as methane, and GHG emissions from manure is a biological process that is largely dependent on the manure conditions, microbial community presence in manure, and their functions. Additional efforts are needed to understand the GHG emissions from manure and develop control strategies to minimize the biological GHG emissions from manure. To study the microbial shift during anaerobic processes responsible for GHG emission, we conducted a series of manure anaerobic digestion experiments, and these experiments were conducted in lab-scale reactors operated under various temperature conditions (28 °C, 36 °C, 44 °C, and 52 °C). We examined the third variable region (V3) of the 16S rRNA gene fingerprints of bacterial presence in anaerobic environment by PCR amplification and DGGE separation. Results showed that bacterial community was affected by the temperature conditions and anaerobic incubation time of manure. The microbial community structure of the original manure changed over time during anaerobic processes, and the community composition changed substantially with the temperature of the anaerobic process. At Day 0, the sequence similarity confirmed that most of the bacteria were similar (>95%) to Acinetobacter sp. (strain: ATCC 31012), a Gram-negative bacteria, regardless of temperature conditions. At day 7, the sequence similarity of DNA fragments of reactors (28 °C) was similar to Acinetobacter sp.; however, the DNA fragments of effluent of reactors at 44 °C and 52 °C were similar to Coprothermobacter proteolyticus (strain: DSM 5265) (similarity: 97%) and Tepidimicrobium ferriphilum (strain: DSM 16624) (similarity: 100%), respectively. At day 60, the analysis showed that DNA fragments of effluent of 28 °C reactor were similar to Galbibacter mesophilus (strain: NBRC 10162) (similarity: 87%), and DNA fragments of effluent of 36 °C reactors were similar to Syntrophomonas curvata (strain: GB8-1) (similarity: 91%). In reactors with a relatively higher temperature, the DNA fragments of effluent of 44 °C reactor were similar to Dielma fastidiosa (strain: JC13) (similarity: 86%), and the DNA fragments of effluent of 52 °C reactor were similar to Coprothermobacter proteolyticus (strain: DSM 5265) (similarity: 99%). To authors' knowledge, this is one of the few studies where DGGE-based approach is utilized to study and compare microbial shifts under mesophilic and thermophilic anaerobic digestions of manure simultaneously. While there were challenges in identifying the bands during gradient gel electrophoresis, the joint use of DGGE and sequencing tool can be potentially useful for illustrating and comparing the change in microbial community structure under complex anaerobic processes and functionality of microbes for understanding the consequential GHG emissions from manure.

4.
Gels ; 10(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38667661

RESUMO

The problem that this study addresses is to understand how microwave radiation is able to degrade genomic DNA of E. coli. In addition, a comparative study was made to evaluate the suitability of a high-throughput automated electrophoresis platform for quantifying the DNA degradation under microwave radiation. Overall, this study investigated the genomic DNA degradation of E. coli under microwave radiation using automated gel electrophoresis. To examine the viable organisms and degradation of genomic DNA under microwave exposure, we used three methods: (1) post-microwave exposure, where E. coli was enumerated using modified mTEC agar method using membrane filtration technique; (2) extracted genomic DNA of microwaved sample was quantified using the Qubit method; and (3) automated gel electrophoresis, the TapeStation 4200, was used to examine the bands of extracted DNA of microwaved samples. In addition, to examine the impacts of microwaves, E. coli colonies were isolated from a fecal sample (dairy cow manure), these colonies were grown overnight to prepare fresh E. coli culture, and this culture was exposed to microwave radiation for three durations: (1) 2 min; (2) 5 min; and (3) 8 min. In general, Qubit values (ng/µL) were proportional to the results of automated gel electrophoresis, TapeStation 4200, DNA integrity numbers (DINs). Samples from exposure studies (2 min, 5 min, and 8 min) showed no viable E. coli. Initial E. coli levels (at 0 min microwave exposure) were 5 × 108 CFU/mL, and the E. coli level was reduced to a non-detectable level within 2 min of microwave exposure. The relationships between Qubit and TapeStation measurements was linear, except for when the DNA level was lower than 2 ng/µL. In 8 min of microwave exposure, E. coli DNA integrity was reduced by 61.7%, and DNA concentration was reduced by 81.6%. The overall conclusion of this study is that microwave radiation had a significant impact on the genomic DNA of E. coli, and prolonged exposure of E. coli to microwaves can thus lead to a loss of genomic DNA integrity and DNA concentrations.

5.
Amino Acids ; 56(1): 28, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578302

RESUMO

In the face of increasing antimicrobial resistance in aquaculture, researchers are exploring novel substitutes to customary antibiotics. One potential solution is the use of antimicrobial peptides (AMPs). We aimed to design and evaluate a novel, short, and compositionally simple AMP with potent activity against various bacterial pathogens in aquaculture. The resulting peptide, KK12YW, has an amphipathic nature and net charge of + 7. Molecular docking experiments disclosed that KK12YW has a strong affinity for aerolysin, a virulence protein produced by the bacterial pathogen Aeromonas sobria. KK12YW was synthesized using Fmoc chemistry and tested against a range of bacterial pathogens, including A. sobria, A. salmonicida, A. hydrophila, Edwardsiella tarda, Vibrio parahaemolyticus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis, and methicillin-resistant S. aureus. The AMP showed promising antibacterial activity, with MIC and MBC values ranging from 0.89 to 917.1 µgmL-1 and 3.67 to 1100.52 µgmL-1, respectively. In addition, KK12YW exhibited resistance to high temperatures and remained effective even in the presence of serum and salt, indicating its stability. The peptide also demonstrated minimal hemolysis toward fish RBCs, even at higher concentrations. Taken together, these findings indicate that KK12YW could be a highly promising and viable substitute for conventional antibiotics to combat microbial infections in aquaculture.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Animais , Simulação de Acoplamento Molecular , Peptídeos Catiônicos Antimicrobianos/química , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli , Peixes , Testes de Sensibilidade Microbiana
6.
J Appl Microbiol ; 135(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38664008

RESUMO

AIM: The aim of this study was to determine the prevalence of microbial pathogens in manure of dairy lagoons in California. METHODS AND RESULTS: To determine pathogens in dairy manure stored in anaerobic lagoons of dairy farm, an extensive field study was conducted across California to sample manure from 20 dairy farms. Samples were analyzed to determine the prevalence of indicator Escherichia coli, Shiga toxin producing E. coli (STEC), Salmonella, and E. coli O157: H7. To test the E. coli, STEC, and Salmonella, we used agar culture-based method followed by polymerase chain reaction (PCR) method. In addition, a real- time PCR based method was used to determine the presence of E coli O157: H7. Study demonstrated that the prevalence of Salmonella in manure sample is lower than E. coli. The presence of Salmonella was found in 2.26% of the samples, and both the culture-based and PCR methods yielded comparable outcomes in detecting Salmonella. Moreover, ∼11.30% of the total samples out of the 177 were identified as positive for STEC by qPCR. CONCLUSION: These findings demonstrate that indicator E. coli are abundantly present in anaerobic lagoons. However, the presence of STEC, and Salmonella is substantially low.


Assuntos
Indústria de Laticínios , Escherichia coli , Esterco , Salmonella , Escherichia coli Shiga Toxigênica , Esterco/microbiologia , Salmonella/isolamento & purificação , Salmonella/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação , Escherichia coli Shiga Toxigênica/genética , Animais , Prevalência , Escherichia coli/isolamento & purificação , Escherichia coli/genética , Bovinos , California , Reação em Cadeia da Polimerase em Tempo Real
7.
Environ Technol ; : 1-17, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310325

RESUMO

In dairy manure, a wide array of microorganisms, including many pathogens, survive and grow under suitable conditions. This microbial community offers a tremendous opportunity for studying animal health, the transport of microbes into the soil, air, and water, and consequential impacts on public health. The aim of this study was to assess the impacts of manure management practices on the microbial community of manure. The key novelty of this work is to identify the impacts of various stages of manure management on microbes living in dairy manure. In general, the majority of dairy farms in California use a flush system to manage dairy manure, which involves liquid-solid separations. To separate liquid and solid in manure, Multi-stage Alternate Dairy Effluent Management Systems (ADEMS) that use mechanical separation systems (MSS) or weeping wall separation systems (WWSS) are used. Thus, this study was conducted to understand how these manure management systems affect the microbial community. We studied the microbial communities in the WWSS and MSS separation systems, as well as in the four stages of the ADEMS. The 16S rRNA gene from the extracted genomic DNA of dairy manure was amplified using the NovoSeq Illumina next-generation sequencing platform. The sequencing data were used to perform the analysis of similarity (ANOSIM) and multi-response permutation procedure (MRRP) statistical tests, and the results showed that microbial communities among WWSS and MSS were significantly different (p < 0.05). These findings have significant practical implications for the design and implementation of manure management practices in dairy farms.

8.
Vet Res Commun ; 48(3): 1573-1593, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38409399

RESUMO

The safety and effectiveness of oxytetracycline can potentially manage bacterial infections in fish. This, in turn, might reduce the concerns related to its use in aquaculture and human consumption, such as toxicity, antimicrobial resistance, and other associated risks. The primary objective of this study was to assess how adding oxytetracycline dihydrate to the diet affects its effectiveness, safety, and the presence of residues in T. putitora. T. putitora fingerlings, subjected to experimental infection with Aeromonas hydrophila at a concentration of 108 CFU mL- 1, received an oral administration of oxytetracycline dihydrate. The oxytetracycline dihydrate was added to the feed (corresponding to 2% of the fish body weight) at concentrations of 44.1, 88.2, 132.3 and 176.4 mg Kg- 1 fish body weight per day. This treatment was carried out for 10 consecutive days. The biochemical and physiological responses of T. putitora and efficacy of oxytetracycline dihydrate were determined through estimation of microbial load (CFU mL- 1), haematogram, serum biomarkers, behavioral characteristics, non-specific immunity and residue depletion. Experimentally infected fish showed disease progression and induced histopathological conditions with highest microbial load (CFU mL- 1) in the muscle of both control and treated fish. The fish haematogram showed increased leucocyte and haemoglobin content, influenced by dietary oxytetracycline dihydrate. The fish demonstrated adaptive physiological response to oxytetracycline dihydrate at 44.1 to 88.2 mg and resulted in increased albumin and globulin content. The serum-enzyme assay showed significant increase in aspartate aminotransferase (AST), alanine aminotransferase (ALT) and plasma alkaline phosphatase (ALP) activities in the test fish (< 0.05). Oxytetracycline dihydrate at 88.2 to 132.3 mg Kg- 1 fish body weight per day recorded higher feed intake (75%), significant survivability (66-68%) and histopathological recovery. The suppressed immune response was manifested with decreased respiratory burst and lysozyme activity. The palatability, treatment of bacterial infection, histopathological changes and survivability by fingerlings of golden mahseer determined the safety and optimized the therapeutic potential of the oxytetracycline dihydrate at 88.2 mg Kg- 1 fish body weight per day for 10 days to contain the infection by A. hydrophila. A withdrawal period of 8-d was recommended as oxytetracycline dihydrate concentration depleted below the legal maximum residue limit (MRL 2.0 mg g- 1) in the edible muscle of the golden mahseer reared at an average water temperature of 20 °C. This is considered safe for human consumption.


Assuntos
Ração Animal , Antibacterianos , Cyprinidae , Suplementos Nutricionais , Doenças dos Peixes , Oxitetraciclina , Animais , Oxitetraciclina/farmacologia , Oxitetraciclina/administração & dosagem , Ração Animal/análise , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia , Suplementos Nutricionais/análise , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Cyprinidae/fisiologia , Dieta/veterinária , Resíduos de Drogas/análise , Aeromonas hydrophila/efeitos dos fármacos , Aeromonas hydrophila/fisiologia , Relação Dose-Resposta a Droga , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/tratamento farmacológico
9.
Chemosphere ; 350: 140977, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158085

RESUMO

Effective capturing of anionic pollutants from wastewater under industrial operating conditions, which requires high processing flux and fast adsorption rate remains a challenge. Here, a commercially available melamine sponge (MS) with reticulated 3D macroporous structures was covalently modified with positively charged moieties using a single step functionalization under mild conditions. The developed novel polycationic melamine sponge (MS+) was formed by a nucleophilic addition reaction between glycidyltrimethylammonium chloride (GMTA) and MS, followed by a self-propagation of GMTA. The produced MS+ possessed strong electrostatic interactions with different anions such as Rose Bengal (RB) and phosphates (P) under a wide pH range (3-11). The MS+ exhibited promoted static adsorption efficiencies of 400 mg g-1 (P) and 600 mg g-1 (RB), within 5 min and 60 s, respectively. Furthermore, the MS+ showed high stability and recyclability for up to 15 cycles of uses, and the recycling process was environmentally friendly by using 1 M NaCl as a releasing solution. Benefiting from fast flow through the macroporous MS+ and highly positive charged skeleton, the MS+ was applied for rapid dynamic enrichment process of P from real manure wastewater with an enrichment factor of 4.4. Utilization of the MS+ as the substrate brings additional advantages such as low cost, availability, and flexibility to fit into existing filtration devices. The developed MS+ could be expanded for enrichments of other anionic species from various polluted water sources.


Assuntos
Poluentes Ambientais , Triazinas , Poluentes Químicos da Água , Águas Residuárias , Adsorção , Filtração , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA