Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Biomed Pharmacother ; 168: 115731, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37857248

RESUMO

Photobac is a near infrared photosensitizer (PS) derived from naturally occurring bacteriochlorophyll- a, with a potential for treating a variety of cancer types (U87, F98 and C6 tumor cells in vitro). The main objective of the studies presented herein was to evaluate the efficacy, toxicity and pharmacokinetic profile of Photobac in animals (mice, rats and dogs) and submit these results to the United States Food and Drug Administration (US FDA) for its approval to initiate Phase I human clinical trials of glioblastoma, a deadly cancer disease with no long term cure. The photodynamic therapy (PDT) efficacy of Photobac was evaluated in mice subcutaneously implanted with U87 tumors, and in rats bearing C6 tumors implanted in brain. In both tumor types, the Photobac-PDT was quite effective. The long-term cure in rats was monitored by magnetic resonance imaging (MRI) and histopathology analysis. A detailed pharmacology, pharmacokinetics and toxicokinetic study of Photobac was investigated in both non-GLP and GLP facilities at variable doses following the US FDA parameters. Safety Pharmacology studies suggest that there is no phototoxicity, cerebral or retinal toxicity with Photobac. No metabolites of Photobac were observed following incubation in rat, dog, mini-pig and human hepatocytes. Based on current biological data, Photobac-IND received the approval for Phase-I human clinical trials to treat Glioblastoma (brain cancer), which is currently underway at our institute. Photobac has also received an orphan drug status from the US FDA, because of its potential for treating Glioblastoma as no effective treatment is currently available for this deadly disease.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Fotoquimioterapia , Ratos , Cães , Animais , Camundongos , Humanos , Suínos , Bacterioclorofilas/uso terapêutico , Glioblastoma/patologia , Fotoquimioterapia/métodos , Bacterioclorofila A/uso terapêutico , Porco Miniatura , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Modelos Animais
3.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37445799

RESUMO

Current treatment for prostate cancer is dependent on the stages of the cancer, recurrence, and genetic factors. Treatment varies from active surveillance or watchful waiting to prostatectomy, chemotherapy, and radiation therapy in combination or alone. Although radical prostate cancer therapy reduces the advancement of the disease and its mortality, the increased disease treatment associated morbidity, erectile dysfunction, and incontinence affect the quality of life of cancer survivors. To overcome these problems, photodynamic therapy (PDT) has previously been investigated using PhotofrinTM as a photosensitizer (PS). However, Photofrin-PDT has shown limitations in treating prostate cancer due to its limited tumor-specificity and the depth of light penetration at 630 nm (the longest wavelength absorption of PhotofrinTM). The results presented herein show that this limitation can be solved by using a near infrared (NIR) compound as a photosensitizer (PS) for PDT and the same agent also acts as a sonosensitizer for SDT (using ultrasound to activate the compound). Compared to light, ultrasound has a stronger penetration ability in biological tissues. Exposing the PS (or sonosensitizer) to ultrasound (US) initiates an electron-transfer process with a biological substrate to form radicals and radical ions (type I reaction). In contrast, exposure of the PS to light (PDT) generates singlet oxygen (type II reaction). Therefore, the reactive oxygen species (ROS) produced by SDT and PDT follow two distinct pathways, i.e., type I (oxygen independent) and type II (oxygen dependent), respectively, and results in significantly enhanced destruction of tumor cells. The preliminary in vitro and in vivo results in a PC3 cell line and tumor model indicate that the tumor specificality of the therapeutic agent(s) can be increased by targeting galectin-1 and galectin-3, known for their overexpression in prostate cancer.


Assuntos
Fotoquimioterapia , Neoplasias da Próstata , Masculino , Humanos , Camundongos , Animais , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Fotoquimioterapia/métodos , Éter de Diematoporfirina , Qualidade de Vida , Neoplasias da Próstata/patologia , Oxigênio , Linhagem Celular Tumoral
4.
Molecules ; 28(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175191

RESUMO

To investigate and compare the pharmacokinetic profile and anti-cancer activity of fluorinated and iodinated photosensitizers (PSs), the 3-(1'-(o-fluorobenzyloxy)ethyl pyropheophorbide and the corresponding meta-(m-) and para (p-) fluorinated analogs (methyl esters and carboxylic acids) were synthesized. Replacing iodine with fluorine in PSs did not make any significant difference in fluorescence and singlet oxygen (a key cytotoxic agent) production. The nature of the delivery vehicle and tumor types showed a significant difference in uptake and long-term cure by photodynamic therapy (PDT), especially in the iodinated PS. An unexpected difference in the pharmacokinetic profiles of fluorinated vs. iodinated PSs was observed. At the same imaging parameters, the fluorinated PSs showed maximal tumor uptake at 2 h post injection of the PS, whereas the iodinated PS gave the highest uptake at 24 h post injection. Among all isomers, the m-fluoro PS showed the best in vivo anti-cancer activity in mice bearing U87 (brain) or bladder (UMUC3) tumors. A direct correlation between the tumor uptake and PDT efficacy was observed. The higher tumor uptake of m-fluoro PS at two hours post injection provides a solid rationale for developing the corresponding 18F-agent (half-life 110 min only) for positron imaging tomography (PET) of those cancers (e.g., bladder, prostate, kidney, pancreas, and brain) where 18F-FDG-PET shows limitations.


Assuntos
Neoplasias , Fotoquimioterapia , Masculino , Animais , Camundongos , Fármacos Fotossensibilizantes/uso terapêutico , Clorofila A , Fotoquimioterapia/métodos , Neoplasias/tratamento farmacológico , Clorofila/farmacologia , Linhagem Celular Tumoral
5.
Chempluschem ; 88(6): e202300159, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37042437

RESUMO

Guest Editors Pui-Chi Lo, Dennis Ng, Ravindra Pandey, and Petr Zimcik introduce the Special Collection on Photodynamic Therapy and give an overview of the developments and challenges in this exciting field.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Neoplasias/tratamento farmacológico
6.
Artigo em Inglês | MEDLINE | ID: mdl-36568335

RESUMO

To investigate the impact of mono- and di-ß-galactose moieties in tumor uptake and photodynamic therapy (PDT) efficacy, HPPH [3-(1'-hexyloxy)ethyl-3-devinylpyropheophorobide-a], the meso pyropheophorbide-a [3-ethyl-3-devinyl-pyropheophorbide-a], and the corresponding 20-benzoic acid analogs were used as starting materials. Reaction of the intermediates containing one or two carboxylic acid functionalities with 1-aminogalactose afforded the desired 172- or 20(4')- mono- and 172, 20(4')-di galactose conjugated photosensitizers (PSs) with and without a carboxylic acid group. The overall lipophilicity caused by the presence of galactose in combination with either an ethyl or (1'-hexyloxy)ethyl side chain at position-3 of the macrocycle made a significant difference in in vitro uptake by tumor cells and photoreaction upon light exposure. Interestingly, among the PSs investigated, compared to HPPH 1 the carbohydrate conjugates 2 and 11 in which ß-galactose moieties are conjugated at positions 172 and 20(4') of meso-pyro pheophorbide-a showed similar in vitro efficacy in FaDu cell lines, but in SCID mice bearing FaDu tumors (head & neck) Ps 11 gave significantly improved long-term tumor cure.

7.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232384

RESUMO

To enhance uptake of photosensitizers by epithelial tumor cells by targeting these to EGFR, pyropheophorbide derivatives were synthesized that had erlotinib attached to different positions on the macrocycle. Although the addition of erlotinib reduced cellular uptake, several compounds showed prolonged cellular retention and maintained photodynamic efficacy. The aim of this study was to identify whether erlotinib moiety assists in tumor targeting through interaction with EGFR and whether this interaction inhibits EGFR kinase activity. The activity of the conjugates was analyzed in primary cultures of human head and neck tumor cells with high-level expression of EGFR, and in human carcinomas grown as xenografts in mice. Uptake of erlotinib conjugates did not correlate with cellular expression of EGFR and none of the compounds exerted EGFR-inhibitory activity. One derivative with erlotinib at position 3, PS-10, displayed enhanced tumor cell-specific retention in mitochondria/ER and improved PDT efficacy in a subset of tumor cases. Moreover, upon treatment of the conjugates with therapeutic light, EGFR-inhibitory activity was recovered that attenuated EGFR signal-dependent tumor cell proliferation. This finding suggests that tumor cell-specific deposition of erlotinib-pyropheophorbides, followed by light triggered release of EGFR-inhibitory activity, may improve photodynamic therapy by attenuating tumor growth that is dependent on EGFR-derived signals.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Animais , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Humanos , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais
8.
J Photochem Photobiol B ; 234: 112513, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35841739

RESUMO

Pheophorbide-based photosensitizers have demonstrated tumor cell-specific retention. The lead compound 3-[1'-hexyloxyethyl]-2-devinylpyropheophorbide-a (HPPH) in a clinical trial for photodynamic therapy of head and neck cancer lesions indicated a complete response in 80% of patients. The question arises whether the partial response in 20% of patients is due to inefficient retention of photosensitizers by tumor cells and, if so, can the photosensitizer preference of individual cancer cases be identified prior to photodynamic therapy. This study determined the specificity of head and neck cancer cells and tumor tissues for the uptake and retention of diffusible pheophorbides differing in peripheral groups on the macrocycle that contribute to cellular binding. The relationship between photosensitizer level and light-mediated photoreaction was characterized to identify markers for predicting the effectiveness of photodynamic therapy in situ. The experimental models were stromal and epithelial cells isolated from head and neck tumor samples and integrated into monotypic tissue cultures, reconstituted three-dimensional co-cultures, and xenografts. Tumor cell-specific photosensitizer retention patterns were identified, and a procedure was developed to allow the diagnostic evaluation of HPPH binding by tumor cells in individual cancer cases. The findings of this study may assist in designing conditions for photosensitizer application and photodynamic therapy of head and neck cancer lesions optimized for each patient's case.


Assuntos
Neoplasias de Cabeça e Pescoço , Fotoquimioterapia , Clorofila/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Fármacos Fotossensibilizantes/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
9.
J Med Chem ; 65(13): 9267-9280, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35763292

RESUMO

3-(1'-Hexyloxyethyl)-3-devinylpyropheophorbide-a (HPPH or Photochlor), a tumor-avid chlorophyll a derivative currently undergoing human clinical trials, was conjugated with mono-, di-, and tri-Gd(III)tetraxetan (DOTA) moieties. The T1/T2 relaxivity and in vitro PDT efficacy of these conjugates were determined. The tumor specificity of the most promising conjugate was also investigated at various time points in mice and rats bearing colon tumors, as well as rabbits bearing widespread metastases from VX2 systemic arterial disseminated metastases. All the conjugates showed significant T1 and T2 relaxivities. However, the conjugate containing 3-Gd(III)-aminoethylamido-DOTA at position 17 of HPPH demonstrated great potential for tumor imaging by both MR and fluorescence while maintaining its PDT efficacy. At an MR imaging dose (10 µmol/kg), HPPH-3Gd(III)DOTA did not cause any significant organ toxicity in mice, indicating its potential as a cancer imaging (MR and fluorescence) agent with an option to treat cancer by photodynamic therapy (PDT).


Assuntos
Neoplasias do Colo , Fotoquimioterapia , Animais , Clorofila/análogos & derivados , Clorofila/farmacologia , Clorofila A , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/tratamento farmacológico , Compostos Heterocíclicos com 1 Anel , Humanos , Camundongos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Coelhos , Ratos
10.
Biomedicines ; 10(4)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35453607

RESUMO

We have previously shown that a radioactive (123I)-analog of methyl 3-(1'-(iodobexyloxy) ethyl-3-devinylpyropheophorbide-a (PET-ONCO), derived from chlorophyll-a can be used for positron emission tomography (PET) imaging of a variety of tumors, including those where 18F-FDG shows limitations. In this study, the photodynamic therapy (PDT) efficacy of the corresponding non-radioactive photosensitizer (PS) was investigated in a variety of tumor types (NSCLC, SCC, adenocarcinoma) derived from lung cancer patients in mice tumor models. The in vitro and in vivo efficacy was also investigated in combination with doxorubicin, and a significantly enhanced long-term tumor response was observed. The toxicity and toxicokinetic profile of the iodinated PS was also evaluated in male and female Sprague-Dawley rats and Beagle dog at variable doses (single intravenous injections) to assess reversibility or latency of any effects over a 28-day dose free period. The no-observed-adverse-effect (NOAEL) of the PS was considered to be 6.5 mg/kg for male and female rats, and for dogs, 3.45 mg/kg, the highest dose levels evaluated, respectively. The corresponding plasma Cmax and AYClast for male and female rats were 214,000 and 229,000 ng/mL and 3,680,000 and 3,810,000 h * ng/mL, respectively. For male and female dogs, the corresponding plasma Cmax and AYClast were 76,000 and 92,400 ng/mL and 976,000 and 1,200,000 h * ng/mL, respectively.

11.
J Photochem Photobiol B ; 227: 112375, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34968800

RESUMO

This study investigated the impact of anionic and cationic substituents of the pyropheophorbide-based photosensitizers (PS) on uptake and retention by tumor epithelial cells and photodynamic therapy (PDT). A series of PSs were generated that bear carboxylic acid functionalities, alkyl amines with variable length of carbon units or as a quaternary ammonium salt introduced at position 172 of 3-(1'-hexyloxy)ethyl-3-devinylpyropheophorbide-a (HPPH). The nature of the functionalities in the macrocycle made a significant difference in overall lipophilicity (log D values at pH 7.4), and in binding to and retention by human and murine tumor cells. Depending on the presence of functional groups, the PSs showed a change in cellular uptake from diffusion to endocytosis and in the preference for subcellular localization to mitochondria/ER or lysosomes. Two and more carboxylic groups drastically reduced uptake by all cell types. In contrast, PSs with amine and quaternary amine salt showed higher cellular binding, uptake and in vitro PDT efficacy than HPPH. The enhanced cellular uptake of the cationic PSs was accompanied by a loss of tumor cell specificity and contributed to severe systemic toxicity in tumor-bearing mice intravenously injected with the PS and subjected to investigate their therapeutic potential.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Animais , Transporte Biológico , Lisossomos/metabolismo , Camundongos , Fármacos Fotossensibilizantes/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
12.
Chempluschem ; 86(4): 674-680, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33881234

RESUMO

A series of meso-biphenyl linked chlorin and bacteriochlorin dimers, derived from naturally occurring chlorophyll (Chl-a) and bacteriochlorophyll (BChl-a) were synthesized in 32 % to 44 % yields and characterized, as photosynthetic antenna mimics, and a new class of singlet oxygen producing agents. The dimers are characterized by absorption, fluorescence, electrochemical, spectroelectrochemical and computational methods to evaluate their physico-chemical properties, and to identify ground and excited state interactions. Evidence of excited energy exchange among the chromophores in the dimer is derived from femtosecond transient absorption spectral studies. Rate constants for excitation hopping were in the order of 1011  s-1 , indicating occurrence of efficient processes. Nanosecond transient absorption studies confirmed relaxation of the singlet excited chlorin and bacteriochlorin dimers to their corresponding triplet states (3 Chl* and 3 Bchl*). As predicted by the established energy level diagrams, both 3 Chl* and 3 Bchl* are shown to be capable of producing singlet oxygen with appreciable quantum yields (ϕSO ∼0.3).

13.
J Med Chem ; 64(8): 4787-4809, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33822622

RESUMO

To investigate the importance of the chirality and precise structure at position 3(1') of pyropheophorbide-a for tumor cell specificity and photodynamic therapy (PDT), a series of photosensitizers (PSs) was synthesized: (a) with and without chirality at position 3(1'), (b) alkyl ether chain with a variable number of chiral centers, (c) hexyl ether versus thioether side chain, and (d) methyl ester versus carboxylic acid group at position 172. The cellular uptake and specificity were defined in human lung and head/neck cancer cells. PSs without a chiral center and with an alkyl chain or thioether functionalities showed limited uptake and PDT efficacy. Replacing the methyl group at the chiral center with a propyl group or introducing an additional chiral center improved cellular retention and tumor cell specificity. Replacing the carboxylic acid with methyl ester at position 172 lowered cellular uptake and PDT efficacy. A direct correlation between the PS uptake in vitro and in vivo was identified.


Assuntos
Clorofila/análogos & derivados , Fármacos Fotossensibilizantes/metabolismo , Animais , Clorofila/química , Clorofila/metabolismo , Clorofila/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Luz , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Camundongos SCID , Microscopia de Fluorescência , Fotoquimioterapia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/uso terapêutico , Solubilidade , Estereoisomerismo , Transplante Heterólogo , Células Tumorais Cultivadas
14.
J Med Chem ; 64(1): 741-767, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33400524

RESUMO

Erlotinib was covalently linked to 3-(1'-hexyloxy)ethyl-3-devinylpyropheophorbide-a (HPPH) and structurally related chlorins and bacteriochlorins at different positions of the tetrapyrrole ring. The functional consequence of each modification was determined by quantifying the uptake and subcellular deposition of the erlotinib conjugates, cellular response to therapeutic light treatment in tissue cultures, and in eliminating of corresponding tumors grown as a xenograft in SCID mice. The experimental human cancer models the established cell lines UMUC3 (bladder), FaDu (hypopharynx), and primary cultures of head and neck tumor cells. The effectiveness of the compounds was compared to that of HPPH. Furthermore, specific functional contribution of the carboxylic acid side group at position 172 and the chiral methyl group at 3(1') to the overall activity of the chimeric compounds was assessed. Among the conjugates investigated, the PS 10 was identified as the most effective candidate for achieving tumor cell-specific accumulation and yielding improved long-term tumor control.


Assuntos
Cloridrato de Erlotinib/química , Fármacos Fotossensibilizantes/síntese química , Porfirinas/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Feminino , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/mortalidade , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Camundongos , Camundongos SCID , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Estereoisomerismo , Relação Estrutura-Atividade , Taxa de Sobrevida
15.
Sci Rep ; 10(1): 21791, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311561

RESUMO

This article presents the construction of a multimodality platform that can be used for efficient destruction of brain tumor by a combination of photodynamic and sonodynamic therapy. For in vivo studies, U87 patient-derived xenograft tumors were implanted subcutaneously in SCID mice. For the first time, it has been shown that the cell-death mechanism by both treatment modalities follows two different pathways. For example, exposing the U87 cells after 24 h incubation with HPPH [3-(1'-hexyloxy)ethyl-3-devinyl-pyropheophorbide-a) by ultrasound participate in an electron-transfer process with the surrounding biological substrates to form radicals and radical ions (Type I reaction); whereas in photodynamic therapy, the tumor destruction is mainly caused by highly reactive singlet oxygen (Type II reaction). The combination of photodynamic therapy and sonodynamic therapy both in vitro and in vivo have shown an improved cell kill/tumor response, that could be attributed to an additive and/or synergetic effect(s). Our results also indicate that the delivery of the HPPH to tumors can further be enhanced by using cationic polyacrylamide nanoparticles as a delivery vehicle. Exposing the nano-formulation with ultrasound also triggered the release of photosensitizer. The combination of photodynamic therapy and sonodynamic therapy strongly affects tumor vasculature as determined by dynamic contrast enhanced imaging using HSA-Gd(III)DTPA.


Assuntos
Neoplasias Encefálicas/terapia , Clorofila/análogos & derivados , Fotoquimioterapia , Ondas Ultrassônicas , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Clorofila/farmacologia , Camundongos , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Biomolecules ; 10(12)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317162

RESUMO

This report presents the synthesis and folate receptor target-specificity of amino-functionalized polyacrylamide nanoparticles (AFPAA NPs) for near-infrared (NIR) fluorescence imaging of cancer. For the synthesis of desired nano-constructs, the AFPAA NPs (hereafter referred to as NPs) were reacted with a NIR cyanine dye (CD) bearing carboxylic acid functionality by following our previously reported approach, and the resulting conjugate (NP-CD) on further reaction with folic acid (FA) resulted in a new nano-construct, FA-NP-CD, which demonstrated significantly higher uptake in folate receptor-positive breast cancer cells (KB+) and in folate receptor over-expressed tumors in vivo. The target-specificity of these nanoparticles was further confirmed by inhibition assay in folate receptor-positive (KB+) and -negative (HT-1080) cell lines. To show the advantages of polyacrylamide (PAA)-based NPs in folate receptor target-specificity, the CD used in preparing the FA-NP-CD construct was also reacted with folic acid alone and the synthetic conjugate (CD-FA) was also investigated for its target-specificity. Interestingly, in contrast to NPs (FA-NP-CD), the CD-FA conjugate did not show any significant in vitro or in vivo specificity toward folate receptors, showing the advantages of PAA-based nanotechnology in delivering the desired agent to tumor cells.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Receptores de Folato com Âncoras de GPI/metabolismo , Ácido Fólico/química , Nanopartículas/química , Imagem Óptica/métodos , Resinas Acrílicas/química , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carbocianinas/química , Carbocianinas/metabolismo , Linhagem Celular Tumoral , Feminino , Fibroblastos/metabolismo , Fibrossarcoma/patologia , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Ácido Fólico/metabolismo , Glicoconjugados/química , Glicoconjugados/metabolismo , Xenoenxertos , Humanos , Raios Infravermelhos , Células KB , Camundongos , Camundongos Nus
17.
Trends Res ; 3(4)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33178990

RESUMO

Despite its significant overall efficacy, BCG fails to benefit a substantial proportion of bladder cancer (BlCa) patients. Here, we review recent data highlighting the role of tumor microenvironment (TME) in limiting antitumoral activity of BCG treatment and emerging opportunities to target TME to enhance the overall outcomes in BCG-treated BlCa patients.

18.
ChemMedChem ; 15(21): 2058-2070, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32916033

RESUMO

3-(1'-Hexyloxyethyl)-3-devinyl-pyropheophorbide-a (HPPH or Photochlor), a tumor-avid chlorophyll-a derivative currently undergoing human clinical trials, was conjugated at various peripheral positions (position-17 or 20) of HPPH with either Gd(III)-aminobenzyl-DTPA (Gd(III) DTPA) or Gd(III)-aminoethylamido-DOTA (Gd(III) DOTA). The corresponding conjugates were evaluated for in vitro PDT efficacy, T1 , T2 relaxivities, in vivo fluorescence, and MR imaging under similar treatment parameters. Among these analogs, the water-soluble Gd(III)-aminoethylamido-DOTA linked at position-17 of HPPH, i. e., HPPH-17-Gd(III) DOTA, demonstrated strong potential for tumor imaging by both MR and fluorescence, while maintaining the PDT efficacy in BALB/c mice bearing Colon-26 tumors (7/10 mice were tumor free on day 60). In contrast to Gd(III) DTPA (Magnevist) and Gd(III) DOTA (Dotarem), the HPPH-Gd(III) DOTA retains in the tumor for a long period of time (24 to 48 h) and provides an option of fluorescence-guided cancer therapy. Thus, a single agent can be used for cancer-imaging and therapy. However, further detailed pharmacokinetic, pharmacodynamic, and toxicological studies of the conjugate are required before initiating Phase I human clinical trials.


Assuntos
Antineoplásicos/farmacologia , Quelantes/farmacologia , Clorofila/análogos & derivados , Neoplasias do Colo/tratamento farmacológico , Gadolínio/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quelantes/síntese química , Quelantes/química , Clorofila/química , Clorofila/farmacologia , Neoplasias do Colo/diagnóstico por imagem , Ensaios de Seleção de Medicamentos Antitumorais , Gadolínio/química , Humanos , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/tratamento farmacológico , Imagem Óptica , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química
19.
J Photochem Photobiol B ; 211: 111998, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32862090

RESUMO

Herein we report the positron emission tomography (PET) imaging potential of a 124I-labeled radiopharmaceutical (PET-ONCO). In tumored mice, it shows high uptake in a variety of tumors: brain (GL261, U87), Colon (Colon26), lung (Lewis lung), breast (4 T1), bladder (UMUC3), pancreas (PANC-1) implanted in mice. This agent also shows promise for imaging associated metastatic disease (breast to lung, to bone). Interestingly, the iodinated compound derived from chlorophyll-a, in combination with the corresponding 124I-analog, can serve as a dual imaging agent (PET/fluorescence, complimentary to each other), with an option of photodynamic therapy (PDT). In contrast to Fluorine-18 (half-life 110 min), the Iodine-124 radionuclide has a physical half-life of roughly 4 days. Thus, unlike 18F-FDG, PET-ONCO can be transported longer distances. While the time for optimal tumor-uptake was observed at 24 h, improved tumor contrasts of both primary and metastasis were obtained at 48 and 72 h post- injection (i. v.) of PET-ONCO. In both mice and rats at a single dose study, PET-ONCO did not show any organ toxicity.


Assuntos
Clorofila A/química , Indicadores e Reagentes/química , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Animais , Transporte Biológico , Clorofila A/metabolismo , Feminino , Radioisótopos de Flúor/química , Humanos , Radioisótopos do Iodo/química , Masculino , Camundongos Endogâmicos BALB C , Imagem Óptica , Fotoquimioterapia , Porfirinas/química , Tomografia por Emissão de Pósitrons , Ratos Sprague-Dawley , Fatores de Tempo
20.
Chemistry ; 26(65): 14996-15006, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32662927

RESUMO

A series of chlorin-bacteriochlorin dyads (derived from naturally occurring chlorophyll-a and bacteriochlorophyll-a), covalently connected either through the meso-aryl or ß-pyrrole position (position-3) via an ester linkage have been synthesized and characterized as a new class of far-red emitting fluorescence resonance energy transfer (FRET) imaging, and heavy atom-lacking singlet oxygen-producing agents. From systematic absorption, fluorescence, electrochemical, and computational studies, the role of chlorin as an energy donor and bacteriochlorin as an energy acceptor in these wide-band-capturing dyads was established. Efficiency of FRET evaluated from spectral overlap was found to be 95 and 98 % for the meso-linked and ß-pyrrole-linked dyads, respectively. Furthermore, evidence for the occurrence of FRET from singlet-excited chlorin to bacteriochlorin was secured from studies involving femtosecond transient absorption studies in toluene. The measured FRET rate constants, kFRET , were in the order of 1011  s-1 , suggesting the occurrence of ultrafast energy transfer in these dyads. Nanosecond transient absorption studies confirmed relaxation of the energy transfer product, 1 BChl*, to its triplet state, 3 Bchl*. The 3 Bchl* thus generated was capable of producing singlet oxygen with quantum yields comparable to their monomeric entities. The occurrence of efficient FRET emitting in the far-red region and the ability to produce singlet oxygen make the present series of dyads useful for photonic, imaging and therapy applications.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Porfirinas , Pirróis , Oxigênio Singlete
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA