Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(6): 6305-6315, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371762

RESUMO

The restoration process of burned and rough skin takes a long time and remains a critical challenge. It can be repaired through a combination of proper care, hydration, and topical therapies. In this study, a novel nanoemulsion was synthesized through the high-energy ultrasonication method. A total of five nanoemulsions (NE1-5) were prepared with varying concentrations of sandalwood oil, a nonionic surfactant (polysorbate 80), and water. Among them, NE3 had a number of appropriate physicochemical characteristics, such as physiological pH (5.58 ± 0.09), refractive index (∼1.34), electrical conductivity (115 ± 0.23 mS cm-1), and transmittance (∼96.5%), which were suitable for skin care applications. The NE3 had a strong surface potential of -18.5 ± 0.15 mV and a hydrodynamic size of 61.99 ± 0.22 nm with a polydispersity index of 0.204. The structural integrity and a distinct droplet size range between 50 and 100 nm were confirmed by transmission electron microscopic analysis. The skin regeneration and restoration abilities of synthesized nanoemulsions were examined by conducting an in vivo study on Sprague-Dawley rats. Exposure to NE3 significantly increased the healing process in burned skin as compared to untreated control and nonemulsified sandalwood oil. In another set of experiments, the NE3-treated rough skin became softer, smoother, and less scaly than all other treatments. Enhanced fatty acids, i.e., palmitic acid, stearic acid, and cholesterol, were recorded in NE3-supplemented burned and rough skin compared to the untreated control. The NE3 had outstanding compatibility with key components of skincare products without any stability issues. Its biocompatibility with the cellular system was established by the negligible generation of reactive oxygen species (ROS) and a lack of genotoxicity. Considering these results, NE3 can be used in cosmetic products such as creams, lotions, and serums, allowing industries to achieve improved product formulations and provide better healthcare benefits to humanity.

2.
Plant Physiol Biochem ; 197: 107637, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36933507

RESUMO

Herein, the impact of chitosan fabricated biogenic silver nanoparticles (Ch@BSNP) has been evaluated for the protective management of bacterial leaf spot (BLS) disease in tomatoes caused by Xanthomonas campestris (NCIM5028). The Ch@BSNP originated by the Trichoderma viride (MTCC5661) derived extracellular compounds and subsequent chitosan hybridization. Spherical-shaped Ch@BSNP (30-35 nm) treated diseased plants were able to combat the biotic stress, as evidenced by the decreased elevated response of stress markers viz; anthocyanin (34.02%), proline (45.00%), flavonoids (20.26%), lipid peroxidation (10.00%), guaiacol peroxidase (36.58%), ascorbate peroxidase (41.50%), polyphenol oxidase (25.34%) and phenylalanine ammonia-lyase (2.10 fold) as compared to untreated diseased plants. Increased biochemical content specifically sugar (15.43%), phenolics (49.10%), chlorophyll, and carotenoids were measured in Ch@BSNP-treated diseased plants compared to untreated X. campestris-infested plants. The Ch@BSNP considerably reduced stress by increasing net photosynthetic rate and water use efficiency along with decreased transpiration rate and stomatal conductance in comparison to infected plants. Additionally, the expression of defense-regulatory genes viz; growth responsive (AUX, GH3, SAUR), early defense responsive (WRKYTF22, WRKY33, NOS1), defense responsive (PR1, NHO1, NPR1), hypersensitivity responsive (Pti, RbohD, OXI1) and stress hormones responsive (MYC2, JAR1, ERF1) were found to be upregulated in diseased plants while being significantly downregulated in Ch@BSNP-treated diseased plants. Furthermore, fruits obtained from pathogen-compromised plants treated with Ch@BSNP had higher levels of health-promoting compounds including lycopene and beta-carotene than infected plant fruits. This nano-enabled and environmentally safer crop protection strategy may encourage a sustainable agri-system towards the world's growing food demand and promote food security.


Assuntos
Quitosana , Nanopartículas Metálicas , Solanum lycopersicum , Prata/química , Mecanismos de Defesa
3.
Plants (Basel) ; 12(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36840163

RESUMO

Climate change is more likely to have a detrimental effect on the world's productive assets. Several undesirable conditions and practices, including extreme temperature, drought, and uncontrolled use of agrochemicals, result in stresses that strain agriculture. In addition, nutritional inadequacies in food crops are wreaking havoc on human health, especially in rural regions of less developed countries. This could be because plants are unable to absorb the nutrients in conventional fertilizers, or these fertilizers have an inappropriate or unbalanced nutrient composition. Chemical fertilizers have been used for centuries and have considerably increased crop yields. However, they also disrupt soil quality and structure, eventually impacting the entire ecosystem. To address the situation, it is necessary to develop advanced materials that can release nutrients to targeted points in the plant-soil environment or appropriate receptors on the leaf in the case of foliar applications. Recently, nanotechnology-based interventions have been strongly encouraged to meet the world's growing food demand and to promote food security in an environmentally friendly manner. Biological approaches for the synthesis of nanoscale agro-materials have become a promising area of research, with a wide range of product types such as nanopesticides, nanoinsecticides, nanoherbicides, nanobactericides/fungicides, bio-conjugated nanocomplexes, and nanoemulsions emerging therefrom. These materials are more sustainable and target-oriented than conventional agrochemicals. In this paper, we reviewed the literature on major abiotic and biotic stresses that are detrimental to plant growth and productivity. We comprehensively discussed the different forms of nanoscale agro-materials and provided an overview of biological approaches in nano-enabled strategies that can efficiently alleviate plant biotic and abiotic stresses while potentially enhancing the nutritional values of plants.

4.
ACS Appl Bio Mater ; 6(3): 1092-1104, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36780700

RESUMO

The rapid increase in multidrug resistant biofilm infections is a major concern for global health. A highly effective therapy is required for the treatment of biofilm related infections. In this study, curcumin loaded alginate microfibers were generated by using the microfluidic technique. In this strategy, alginate microfibers are used as a carrier for the encapsulation of curcumin and then are irradiated with blue light to assess the efficacy of a combined therapy (blue light + curcumin) against drug resistant Staphylococcus aureus (S. aureus). The advantage of utilizing photodynamic therapy (PDT) is the usage of a non-antibiotic mode to inactivate bacterial cells. In the presence of blue light, the curcumin loaded alginate microfibers have shown good eradication activity against biofilms formed by multidrug resistant S. aureus. We achieved different diameters of curcumin loaded alginate microfibers through manipulation of flow rates. The curcumin loaded microfibers were characterized for their size, morphology, and curcumin encapsulation. Further, the efficacy of these microfibers in the presence of blue light has been evaluated against biofilm forming S. aureus (NCIM 5718) through optical and electron microscopy. This study employs microfluidic techniques to obtain an efficacious and cost-effective microfibrous scaffold for controlled release of curcumin to treat biofilms in the presence of blue light.


Assuntos
Curcumina , Staphylococcus aureus Resistente à Meticilina , Fotoquimioterapia , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Curcumina/farmacologia , Microfluídica , Fotoquimioterapia/métodos , Biofilmes , Infecções Estafilocócicas/tratamento farmacológico
5.
FEMS Microbiol Ecol ; 98(10)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36066920

RESUMO

Herein, Bacillus subtilis PBE-8's biocontrol efficacy was evaluated through physiological and metabolic approaches against Fusarium oxysporum f.sp. lycopersici (FOL). The study elaborates on PBE-8's cell-free filtrate (CFF) antifungal activity through mycelial growth inhibition, metabolite profiling, and substrates utilization patterns. Additionally, under different CFF concentrations, reduction in spore count (94%-55%), biomass (50%), and cytoplasmic bulbous protrusions in mycelia were also observed. Furthermore, the effect of bacterial CFF on FOL metabolism was confirmed through GC-MS. CFF suppresses the concentration of aliphatic amino acids like L-valine, L-leucine, L-Isoleucine, glycine, and fatty acids such as linoleic acid and α- linolenic acid during the co-culturing conditions, which are essential for pathogenicity and resistance against host's systemic acquired resistance. The phenotype microarray assay revealed that CFF-treated FOL shows phenotype loss in 507 (56.58%) out of 896 substrates. Among 507, twenty-seven substrates showed significant phenotype loss, among which four substrates such as L-glutamic acid, L-glutamine, ammonia, and L-arginine are common in different crucial metabolic pathways of FOL, like alanine, aspartate, and glutamate metabolism, arginine and proline, carbon metabolism, arginine biosynthesis, nitrogen metabolism, amino-acyl tRNA synthesis, and biosynthesis of amino acids. The results suggest that PBE-8 CFF has certain antifungal metabolites that hinder the fungal metabolic pathways.


Assuntos
Fusarium , Solanum lycopersicum , Alanina/genética , Alanina/farmacologia , Amônia , Antifúngicos/farmacologia , Arginina , Ácido Aspártico , Bacillus subtilis/genética , Biotransformação , Carbono , Fusarium/genética , Ácido Glutâmico/genética , Ácido Glutâmico/farmacologia , Glutamina/genética , Glutamina/farmacologia , Glicina , Isoleucina/genética , Isoleucina/farmacologia , Leucina/genética , Leucina/farmacologia , Ácidos Linoleicos/farmacologia , Ácidos Linolênicos/farmacologia , Solanum lycopersicum/microbiologia , Análise em Microsséries , Nitrogênio , Fenótipo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Prolina/genética , Prolina/farmacologia , RNA de Transferência/farmacologia , Valina/genética , Valina/farmacologia
6.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830124

RESUMO

Vegetable cultivation is a promising economic activity, and vegetable consumption is important for human health due to the high nutritional content of vegetables. Vegetables are rich in vitamins, minerals, dietary fiber, and several phytochemical compounds. However, the production of vegetables is insufficient to meet the demand of the ever-increasing population. Plant-growth-promoting rhizobacteria (PGPR) facilitate the growth and production of vegetable crops by acquiring nutrients, producing phytohormones, and protecting them from various detrimental effects. In this review, we highlight well-developed and cutting-edge findings focusing on the role of a PGPR-based bioinoculant formulation in enhancing vegetable crop production. We also discuss the role of PGPR in promoting vegetable crop growth and resisting the adverse effects arising from various abiotic (drought, salinity, heat, heavy metals) and biotic (fungi, bacteria, nematodes, and insect pests) stresses.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Bactérias Fixadoras de Nitrogênio/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Rhizobiaceae/crescimento & desenvolvimento , Verduras/crescimento & desenvolvimento , Adaptação Fisiológica/fisiologia , Produção Agrícola/métodos , Produtos Agrícolas/metabolismo , Produtos Agrícolas/microbiologia , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Rhizobiaceae/classificação , Rhizobiaceae/fisiologia , Rizosfera , Estresse Fisiológico/fisiologia , Simbiose/fisiologia , Verduras/metabolismo , Verduras/microbiologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-32363178

RESUMO

Bioengineered silver nanoparticles can emerge as a facile approach to combat plant pathogen, reducing the use of pesticides in an eco-friendly manner. The plants' response during tripartite interaction of plant, pathogen, and nanoparticles remains largely unknown. This study demonstrated the use of bioengineered silver nanoparticles in combating black spot disease caused by necrotrophic fungus Alternaria brassicicola in Arabidopsis thaliana via foliar spray. The particles reduced disease severity by 70-80% at 5 µg/ml without showing phytotoxicity. It elicited plant immunity by a significant reduction in reactive oxygen species (ROS), decreases in stress enzymes by 0.6-19.8-fold, and emergence of autophagy. Comparative plant proteomics revealed 599 proteins expressed during the interaction, where 117 differential proteins were identified. Among different categories, proteins involved in bioenergy and metabolism were most abundant (44%), followed by proteins involved in plant defense (20%). Metabolic profiling by gas chromatography-mass spectroscopy yielded 39 metabolite derivatives in non-polar fraction and 25 in the polar fraction of plant extracts. It was observed that proteins involved in protein biogenesis and early plant defense were overexpressed to produce abundant antimicrobial metabolites and minimize ROS production. Bioengineered silver nanoparticles performed dual functions to combat pathogen attack by killing plant pathogen and eliciting immunity by altering plant defense proteome and metabolome.

8.
FEMS Microbiol Lett ; 366(16)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31580434

RESUMO

A simple and facile way of using biogenic silver nanoparticles (BSNP) (10-20 nm) was developed for wound healing acceleration and suppression of wound infections. The BSNP were formulated in an ointment base, and the study to accelerate the wound healing process was conducted in a rat. The pH of the BSNP ointment, pH 6.8 ± 0.5, lies in normal pH range of the human skin, with good spreadability and diffusibility. The wound closure rate, as a percentage, was highest at day 3 for a BSNP ointment-treated wound at 22.77 ± 1.60%, while in an untreated control the rate was 10.99 ± 1.74%, for Betadine 14.73 ± 2.36% and for Soframycin 18.55 ± 1.37%, compared with day 0. A similar pattern of wound closure rate was found at days 7 and 11. The antibacterial activity of BSNP was evaluated against wound-infection-causing bacteria Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli by the agar diffusion method. The total bacterial counts in the wound area were enumerated by the colony forming unit method. The lowest number of bacterial counts was found in the BSNP-treated wound compared with the other groups. BSNP treatment at 7.5% concentration enhanced migration of fibroblasts in a scratch assay. These findings reveal BSNP as an efficient contrivance for wound healing acceleration and as an eco-friendly alternative therapeutic antimicrobial agent.


Assuntos
Anti-Infecciosos/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Nanomedicina/métodos , Prata/administração & dosagem , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/prevenção & controle , Ferimentos e Lesões/tratamento farmacológico , Animais , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/prevenção & controle , Pomadas/administração & dosagem , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa/isolamento & purificação , Ratos , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/isolamento & purificação , Resultado do Tratamento , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Ferimentos e Lesões/microbiologia
9.
Plant Physiol Biochem ; 143: 351-363, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31541990

RESUMO

Nutrients are the finite natural resources that are essential for productivity and development of rice and its deficiency causes compromised yield along with reduced immunity against several biotic and abiotic stresses. In this study, the potential of Trichoderma reesei has been investigated as a biofertilizer (BF) to ameliorate nutrient stress in different rice cultivars at physiological, biochemical and molecular levels. The results indicated that cultivar Heena is much more compatible with BF as compared to cultivar Kiran at 50% nutrient limiting condition. Enhancement in physiological attributes and photosynthetic pigments were observed in BF treated Heena seedlings. The localization of biofertilizer in treated roots was further validated by scanning electron micrographs. This result correlated well with the higher levels of Indole acetic acid and Gibberellic acid in biofertilizer treated rice. Similarly, the uptake of micro-nutrients such as Fe, Co, Cu and Mo was found to be 1.4-1.9 fold higher respectively in BF treated Heena seedlings under 50% nutrient deficient condition. Furthermore, different stress ameliorating enzymes Guaiacol peroxidase, Super oxide dismutase, Total Phenolic Content, Phenol Peroxidase, Phenylalanine ammonia lyase and Ascorbate peroxidase in Heena seedlings were also increased by 1.8, 1.4, 1.2, 2.4, 1.2, and 8.3-fold respectively, at 50% nutrient deficient condition. The up-regulation of different micro and macro-nutrients allocation and accumulation; metal tolerance related; auxin synthesis genes in BF treated Heena as compared to 50% nutrient deficient condition was further supported by our findings that the application of biofertilizer efficiently ameliorated the deficiency of nutrients in rice.


Assuntos
Oryza/metabolismo , Oryza/microbiologia , Plântula/metabolismo , Plântula/microbiologia , Trichoderma/fisiologia , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Peroxidase/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
10.
Pestic Biochem Physiol ; 157: 45-52, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31153476

RESUMO

Herein, we describe the enhanced antifungal activity of silver nanoparticles biosynthesized by cell free filtrate of Trichoderma viride (MTCC 5661) in comparison to chemically synthesized silver nanoparticles (CSNP) of similar shape and size. Biosynthesized silver nanoparticles (BSNP) enhanced the reduction in dry weight by 20 and 48.8% of fungal pathogens Fusarium oxysporum and Alternaria brassicicola respectively in comparison to their chemical counterparts (CSNP). Nitroblue tetrazolium and Propidium iodide staining demonstrated the higher generation of superoxide radicals lead to higher death in BSNP treated fungus in comparison to CSNP. Scanning electron microscopy of A. brassicicola revealed the osmotic imbalance and membrane disintegrity to be major cause for fungal cell death after treatment with BSNP. To gain an insight into the mechanistic aspect of enhanced fungal cell death after treatment of BSNP in comparison to CSNP, stress responses and real time PCR analysis was carried out with A. brassicicola. It revealed that generation of ROS, downregulation of antioxidant machinery and oxidative enzymes, disruption of osmotic balance and cellular integrity, and loss of virulence are the mechanisms employed by BSNP which establishes them as superior antifungal agent than their chemical counterparts. With increasing drug resistance and ubiquitous presence of fungal pathogens in plant kingdom, BSNP bears the candidature for new generation of antifungal agent.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Nanopartículas Metálicas/química , Doenças das Plantas/microbiologia , Prata/química , Alternaria/efeitos dos fármacos , Fusarium/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
11.
Plant Physiol Biochem ; 121: 216-225, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29149700

RESUMO

Tomato suffers a huge loss every year because of early blight disease. This study focuses on efficient inhibition of Alternaria solani, the causative agent of early blight disease in tomato in vitro and in vivo. Foliar spray of 5 µg/mL of biosynthesized silver nanoparticles in A. solani infected plants resulted in significant increase of 32.58% in fresh weight and 23.52% in total chlorophyll content of tomato as compared to A. solani infected plants. A decrease of 48.57, 30, 39.59 and 28.57% was observed in fungal spore count, lipid peroxidation, proline content and superoxide dismutase respectively in infected tomato plants after treatment with synthesized silver nanoparticles as compared to A. solani infected plants. No significant variation in terms of soil pH, cultured population, carbon source utilization pattern and soil enzymes including dehydrogenase, urease, protenase and ß-glucosidase was observed after foliar spray of nanoparticles. It was revealed that direct killing of pathogens, increased photosynthetic efficiencies, increased plant resistance and decrease in stress parameters and stress enzymes are the mechanisms employed by plants and nanoparticles simultaneously to combat the biotic stress. Biosynthesized silver nanoparticles bear the potential to revolutionize plant disease management, though the molecular aspects of increased resistance must be looked upon.


Assuntos
Alternaria/crescimento & desenvolvimento , Nanopartículas Metálicas/química , Doenças das Plantas/microbiologia , Prata , Solanum lycopersicum , Estresse Fisiológico/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Proteínas de Plantas/biossíntese , Prata/química , Prata/farmacologia
12.
3 Biotech ; 7(5): 345, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28955642

RESUMO

In this study, the interaction of biosynthesized silver nanoparticles (BSNP) with native soil via plant transport was assessed in model pathosystem of Arabidopsis thaliana and Alternaria brassicicola. Foliar application of 5 µg/mL of BSNP reduced number of spores of fungi to 2.2 × 105 from 7 × 105, while numbers of lesions got reduced to 0.9/leaf in treated plants compared to 2.9/leaf in pathogen-infected plant without altering soil pH, electric conductivity, soil organic carbon and soil microbial biomass carbon. Soil enzyme activities including dehydrogenase, acid and alkaline phosphatase, urease, ß-glucosidase and protease did not alter significantly in BSNP-treated plants compared to control plants. Application of BSNP did not alter the number of cultivable bacteria, fungi and actinomycetes. Effect of BSNP on uncultured bacterial diversity was measured by DGGE analysis which revealed similar banding pattern in all different treatments except in A. brassicicola-infected (AB) and A. brassicicola-infected plants treated with silver nanoparticles (AB + BSNP) after 120 days. Although AB-infected plants exhibited a decrease in bacterial diversity, treatment of AB + BSNP after 120 days demonstrated maximum bacterial diversity. McIntosh, Shannon, and Simpson diversity indices were calculated based on carbon source utilization pattern by BIOLOG analysis, revealing no significant difference among all treatments in different time intervals. BSNPs have the potential to act as strong antimicrobial agent for plant disease management without altering the native soil microflora.

13.
FEMS Microbiol Lett ; 364(12)2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28927194

RESUMO

The major problem encountered during genetic manipulation of bacteria is the inability to get transformed because of their natural non-competency. In this study, to overcome this problem, a cost-effective method was developed by combining the properties of gold nanoparticles (GNPs) and the Yoshida effect. Various parameters, including GNP:plasmid ratio, pH and time, were optimized for stability of the GNP-plasmid conjugate. With non-competent Gram-negative cells, the efficiency ranged between 0.1 and 0.45 × 104 transformants µg-1, while the range was (0.02-0.2) × 104 transformants µg-1 with Gram-positive bacteria. GNPs can serve efficiently as a vehicle for better transformation in bacteria.


Assuntos
Técnicas Bacteriológicas/métodos , DNA Bacteriano/genética , Ouro , Nanopartículas Metálicas , Transformação Bacteriana , Técnicas Bacteriológicas/economia , Escherichia coli/genética , Bactérias Gram-Negativas/genética , Bactérias Gram-Positivas/genética , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/química , Plasmídeos
14.
ACS Appl Mater Interfaces ; 9(5): 4519-4533, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28051856

RESUMO

Biogenic synthesis of silver nanoparticles for enhanced antimicrobial activity has gained a lot of momentum making it an urgent need to search for a suitable biocandidate which could be utilized for efficient capping and shaping of silver nanoparticles with enhanced bactericidal activity utilizing its secondary metabolites. Current work illustrates the enhancement of antimicrobial efficacy of silver nanoparticles by reducing and modifying their surface with antimicrobial metabolites of cell free filtrate of Trichoderma viride (MTCC 5661) in comparison to citrate stabilized silver nanoparticles. Nanoparticles were characterized by visual observations, UV-visible spectroscopy, zetasizer, and transmission electron microscopy (TEM). Synthesized particles were monodispersed, spherical in shape and 10-20 nm in size. Presence of metabolites on surface of biosynthesized silver nanoparticles was observed by gas chromatography-mass spectroscopy (GC-MS), energy dispersive X-ray analysis (EDAX), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The antimicrobial activity of both silver nanoparticles was tested against Shigella sonnei, Pseudomonas aeruginosa (Gram-negative) and Staphylococcus aureus (Gram-positive) by growth inhibition curve analysis and colony formation unit assay. Further, it was noted that internalization of biosynthesized nanoparticles inside the bacterial cell was much higher as compared to citrate stabilized particles which in turn lead to higher production of reactive oxygen species. Increase in oxidative stress caused severe damage to bacterial membrane enhancing further uptake of particles and revoking other pathways for bacterial disintegration resulting in complete and rapid death of pathogens as evidenced by fluorescein diacetate/propidium iodide dual staining and TEM. Thus, study reveals that biologically synthesized silver nanoarchitecture coated with antimicrobial metabolites of T. viride was more potent than their chemical counterpart in killing of pathogenic bacteria.


Assuntos
Nanopartículas Metálicas , Antibacterianos , Testes de Sensibilidade Microbiana , Extratos Vegetais , Pseudomonas aeruginosa , Prata , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Microb Pathog ; 105: 346-355, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27889528

RESUMO

Spherical, rectangular, penta, and hexagonal silver nanoparticles of different dimensions were biosynthesized in an eco-friendly manner by biocontrol agent, Trichoderma viride by manipulating physical parameters, pH, temperature, and reaction time. The particles were characterized by UV-vis spectroscopy; Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM) and Fourier Transform Infra-red Spectroscopy (FTIR). Shape and size dependent antimicrobial activity of nanoparticles against human pathogens was observed. Maximum inhibition was found with spherical nanoparticles (2-5 nm) showing 40, 51, 43, 53.9 and 55.8% against Shigella sonnei, Escherichia coli, Serratia marcescens, Staphylococcus. aureus and Pseudomonas aeruginosa respectively, where as pentagonal and hexagonal nanoparticles (50-100 nm) demonstrated 32, 41, 31, 42.84 and 42.80% of inhibition as compared to control. Nanoparticles of different geometry and dimension established enhanced antagonistic activity against pathogens with all the tested antibiotics. Excellent antimicrobial efficacy was obtained with spherical nanoparticles of 2-5 nm with ampicillin and penicillin. Shape and size played major role in enhancing antimicrobial potential of silver nanoparticles, both singly and synergistically with antibiotics which can be exploited to combat the spread of multidrug resistant pathogens.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Prata/química , Prata/farmacologia , Sinergismo Farmacológico , Escherichia coli/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Shigella sonnei/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
16.
Sci Rep ; 6: 27575, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27273371

RESUMO

Biosynthesis of nanoparticles has gained great attention in making the process cost-effective and eco-friendly, but there are limited reports which describe the interdependency of physical parameters for tailoring the dimension and geometry of nanoparticles during biological synthesis. In the present study, gold nanoparticles (GNPs) of various shapes and sizes were obtained by modulating different physical parameters using Trichoderma viride filtrate. The particles were characterized on the basis of visual observation, dynamic light scattering, UV-visible spectroscopy, transmission electron microscopy, fourier transform infrared spectroscopy, and X ray diffraction. While the size varied from 2-500 nm, the shapes obtained were nanospheres, nanotriangles, nanopentagons, nanohexagons, and nanosheets. Changing the parameters such as pH, temperature, time, substrate, and culture filtrate concentration influenced the size and geometry of nanoparticles. Catalytic activity of the biosynthesized GNP was evaluated by UV-visible spectroscopy and confirmed by gas chromatography-mass spectrometric analysis for the conversion of 4-nitrophenol into 4-aminophenol which was strongly influenced by their structure and dimension. Common practices for biodegradation are traditional, expensive, require large amount of raw material, and time taking. Controlling shapes and sizes of nanoparticles could revolutionize the process of biodegradation that can remove all the hurdles in current scenario.


Assuntos
Fenômenos Químicos , Ouro/química , Nanopartículas Metálicas/química , Trichoderma/química , Catálise , Química Verde , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
17.
Ecotoxicol Environ Saf ; 122: 296-302, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26298512

RESUMO

A field experiment using tannery sludge as a soil amendment material and palmarosa (Cymbopogon martinii) as a potential phytostabilizer was conducted to investigate their synergistic effect in relation to the improvement in soil quality/property. Three consecutive harvests of two cultivars of palmarosa-PRC-1 and Trishna, were examined to find out the influence of different tannery sludge doses on their herb, dry matter, essential oil yield and heavy metal accumulation. Soil fertility parameters (N, P, K, Organic carbon) were markedly affected by different doses of sludge. Enhanced soil nitrogen was positively correlated with herb yield (0.719*) and plant height (0.797*). The highest dose of tannery sludge (100 t ha(-1)) exhibited best performance than other treatments with respect to herb, dry matter and oil yield in all three harvests. Trishna was found to be superior to PRC-1 in relation to same studied traits. Quality of oil varied, but was insignificant statistically. Uptake of heavy metals followed same order (Cr>Ni>Pb>Cd) in roots and shoots. Translocation factor <1 for all trace elements and Bioconcentration factor >1 was observed in case of all heavy metals. Overall, tannery sludge enhanced the productivity of crop and metal accumulation occurred in roots with a meager translocation to shoots, hence it can be used as a phytostabiliser. The major advantage of taking palmarosa in metal polluted soil is that unlike food and agricultural crops, the product (essential oil) is extracted by hydro-distillation and there is no chance of oil contamination, thus is commercially acceptable.


Assuntos
Cymbopogon/crescimento & desenvolvimento , Metais Pesados/análise , Esgotos/química , Poluentes do Solo/análise , Solo/química , Curtume , Biodegradação Ambiental , Cymbopogon/metabolismo , Resíduos Industriais/prevenção & controle , Óleos Voláteis/isolamento & purificação , Raízes de Plantas/efeitos dos fármacos
18.
Bioresour Technol ; 166: 235-42, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24914997

RESUMO

The aim of this work was to synthesize gold nanoparticles by Trichoderma viride and Hypocrea lixii. The biosynthesis of the nanoparticles was very rapid and took 10 min at 30 °C when cell-free extract of the T. viride was used, which was similar by H. lixii but at 100 °C. Biomolecules present in cell free extracts of both fungi were capable to synthesize and stabilize the formed particles. Synthesis procedure was very quick and environment friendly which did not require subsequent processing. The biosynthesized nanoparticles served as an efficient biocatalyst which reduced 4-nitrophenol to 4-aminophenol in the presence of NaBH4 and had antimicrobial activity against pathogenic bacteria. To the best of our knowledge, this is the first report of such rapid biosynthesis of gold nanoparticles within 10 min by Trichoderma having plant growth promoting and plant pathogen control abilities, which served both, as an efficient biocatalyst, and a potent antimicrobial agent.


Assuntos
Vias Biossintéticas/fisiologia , Ouro/química , Hypocrea/fisiologia , Nanopartículas Metálicas/química , Trichoderma/fisiologia , Aminofenóis/metabolismo , Anti-Infecciosos/metabolismo , Catálise , Hypocrea/metabolismo , Cinética , Nanopartículas Metálicas/toxicidade , Nitrofenóis/metabolismo , Trichoderma/metabolismo
19.
Nanoscale ; 6(3): 1602-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24336812

RESUMO

Zinc oxysulfide nanocrystals with zinc blende phase are synthesized through a wet-chemical method. An affirmation of the crystal structure, elemental homogeneity and phase transformation is obtained by X-ray diffraction and authenticated by electron micrographic studies. Theoretical observations have strongly supported the thermodynamic solubility limit for its (30%) formation. An anomalous bandgap bowing with modulation in bandgap from 3.74 eV (ZnO) to 3.93 eV (ZnS) was observed with a minimum bandgap of 2.7 eV. Tunable bandgap and a wide range of visible emission ascertain it as a potential material for optoelectronic and solar cell applications due to its large bandgap offsets.

20.
Reprod Toxicol ; 19(4): 547-56, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15749270

RESUMO

This study reports on the toxic effects of 15-days oral administration of untreated (Influent) and treated (Effluent) textile dye wastewaters on male reproductive systems of adult Swiss albino rats (age: 85-90 days) and mice (40-50 days). Textile dye wastewaters decreased body weight (7-25%) and reproductive organ weight (testis, epididymis, prostate gland and seminal vesicle, 2-48%). Similar trends were noted for total protein (14-70%), cholesterol (14-91%) and total lipid (10-30%) content of reproductive organs and spermatozoa, and for fructose levels in seminal vesicle (18-44%). Acid phosphatase activity in prostate however, was increased (11-44%) in the wastewater-exposed animals. Histopathological studies of treated animals revealed altered spermatogenesis, with higher sperm abnormalities, reduction in sperm counts (10-59%), and altered motility (14-56%). The magnitude of these abnormalities was stronger in rats versus mice, while among treatments, it was stronger in the Influent animals. Adverse effects improved when treated rats were allowed to recover 45 days in the control condition. Only recovered Effluent rats were capable of fertilizing normal females indicating that treated wastewater was less toxic; however, in comparison to control rats, litter size and body weight gains of F(1) and F(2) generations were adversely affected. Thus, the present study has established toxicity of both untreated and treated textile dye wastewater on reproductive biology of male Albino mice and rats.


Assuntos
Corantes/toxicidade , Fertilidade/efeitos dos fármacos , Genitália Masculina/efeitos dos fármacos , Indústria Têxtil , Poluentes Químicos da Água/toxicidade , Fosfatase Ácida/metabolismo , Administração Oral , Animais , Feminino , Frutose/metabolismo , Genitália Masculina/enzimologia , Genitália Masculina/metabolismo , Genitália Masculina/patologia , Resíduos Industriais , Metabolismo dos Lipídeos , Tamanho da Ninhada de Vivíparos , Masculino , Camundongos , Tamanho do Órgão/efeitos dos fármacos , Gravidez , Proteínas/metabolismo , Ratos , Contagem de Espermatozoides , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/patologia , Testes de Toxicidade Aguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA