RESUMO
Alcohol use and anxiety disorders occur in both males and females, but despite sharing similar presentation and classical symptoms, the prevalence of alcohol use disorder (AUD) is lower in females. While anxiety is a symptom and comorbidity shared by both sexes, the common underlying mechanism that leads to AUD and the subsequent development of anxiety is still understudied. Using a rodent model of adolescent intermittent ethanol (AIE) exposure in both sexes, we investigated the epigenetic mechanism mediated by enhancer of zeste 2 (EZH2), a histone methyltransferase, in regulating both the expression of activity-regulated cytoskeleton-associated protein (Arc) and an anxiety-like phenotype in adulthood. Here, we report that EZH2 protein levels were significantly higher in PKC-δ positive GABAergic neurons in the central nucleus of amygdala (CeA) of adult male and female rats after AIE. Reducing protein and mRNA levels of EZH2 using siRNA infusion in the CeA prevented AIE-induced anxiety-like behavior, increased H3K27me3, decreased H3K27ac at the Arc synaptic activity response element (SARE) site, and restored deficits in Arc mRNA and protein expression in both male and female adult rats. Our data indicate that an EZH2-mediated epigenetic mechanism in the CeA plays an important role in regulating anxiety-like behavior and Arc expression after AIE in both male and female rats in adulthood. This study suggests that EZH2 may serve as a tractable drug target for the treatment of adult psychopathology after adolescent alcohol exposure.
Assuntos
Ansiedade , Núcleo Central da Amígdala , Proteína Potenciadora do Homólogo 2 de Zeste , Epigênese Genética , Etanol , Animais , Masculino , Feminino , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Núcleo Central da Amígdala/metabolismo , Núcleo Central da Amígdala/efeitos dos fármacos , Ratos , Ansiedade/metabolismo , Ansiedade/genética , Etanol/farmacologia , Modelos Animais de Doenças , Alcoolismo/genética , Alcoolismo/metabolismo , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/efeitos dos fármacos , Ratos Sprague-Dawley , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismoRESUMO
BACKGROUND: The ventral tegmental area (VTA) is a dopaminergic brain area that is critical in the development and maintenance of addiction. During withdrawal from chronic ethanol exposure, the response of VTA neurons to GABA (gamma-aminobutyric acid) is reduced through an epigenetically regulated mechanism. In the current study, a whole-genome transcriptomic approach was used to investigate the underlying molecular mechanism of GABA hyposensitivity in the VTA during withdrawal after chronic ethanol exposure. METHODS: We performed RNA sequencing of the VTA of Sprague Dawley male rats withdrawn for 24 hours from a chronic ethanol diet as well as sequencing of the VTA of control rats fed the Lieber-DeCarli diet. RNA sequencing data were analyzed using weighted gene coexpression network analysis to identify modules that contained coexpressed genes. Validation was performed with quantitative polymerase chain reaction, gas chromatography-mass spectrometry, and electrophysiological assays. RESULTS: Pathway and network analysis of weighted gene coexpression network analysis module 1 revealed a significant downregulation of genes associated with the cholesterol synthesis pathway. Consistent with this association, VTA cholesterol levels were significantly decreased during withdrawal. Chromatin immunoprecipitation indicated a decrease in levels of acetylated H3K27 at the transcriptional control regions of these genes. Electrophysiological studies in VTA slices demonstrated that GABA hyposensitivity during withdrawal was normalized by addition of exogenous cholesterol. In addition, inhibition of cholesterol synthesis produced GABA hyposensitivity, which was reversed by adding exogenous cholesterol to VTA slices. CONCLUSIONS: These results suggest that decreased expression of cholesterol synthesis genes may regulate GABA hyposensitivity of VTA neurons during alcohol withdrawal. Increasing cholesterol levels in the brain may be a novel avenue for therapeutic intervention to reverse detrimental effects of chronic alcohol exposure.
Assuntos
Alcoolismo , Síndrome de Abstinência a Substâncias , Ratos , Masculino , Animais , Ácido gama-Aminobutírico/metabolismo , Síndrome de Abstinência a Substâncias/genética , Síndrome de Abstinência a Substâncias/metabolismo , Área Tegmentar Ventral , Alcoolismo/metabolismo , Ratos Sprague-Dawley , Etanol/farmacologiaRESUMO
Binge drinking is one of the most common patterns (more than 90%) of alcohol consumption by young people. During adolescence, the brain undergoes maturational changes that influence behavioral control and affective behaviors, such as cerebellar brain volume and function in adulthood. We investigated long-term impacts of adolescent binge ethanol exposure on affective and exploratory behaviors and cerebellar gene expression in adult male and female mice. Further, the cerebellum is increasingly recognized as a brain region integrating a multitude of behaviors that span from the traditional primary sensory-motor to affective functions, such as anxiety and stress reactivity. Therefore, we investigated the persistent effects of adolescent intermittent ethanol (AIE) on exploratory and affective behaviors and began to elucidate the role of the cerebellum in these behaviors through excitatory signaling gene expression. We exposed C57BL/6J mice to AIE or air (control) vapor inhalation from postnatal day 28-42. After prolonged abstinence (>34 days), in young adulthood (PND 77+) we assessed behavior in the open field, light/dark, tail suspension, and forced swim stress tests to determine changes in affective behaviors including anxiety-like, depressive-like, and stress reactivity behavior. Excitatory signaling gene mRNA levels of fragile X messenger ribonucleoprotein (FMR1), glutamate receptors (Grin2a, Grin2b and Grm5) and excitatory synaptic markers (PSD-95 and Eaat1) were measured in the cerebellum of adult control and AIE-exposed mice. AIE-exposed mice showed decreased exploratory behaviors in the open field test (OFT) where both sexes show reduced ambulation, however only females exhibited a reduction in rearing. Additionally, in the OFT, AIE-exposed females also exhibited increased anxiety-like behavior (entries to center zone). In the forced swim stress test, AIE-exposed male mice, but not females, spent less time immobile compared to their same-sex controls, indicative of sex-specific changes in stress reactivity. Male and female AIE-exposed mice showed increased Grin2b (Glutamate Ionotropic Receptor NMDA Type Subunit 2B) mRNA levels in the cerebellum compared to their same-sex controls. Together, these data show that adolescent binge-like ethanol exposure altered both exploratory and affective behaviors in a sex-specific manner and modified cerebellar Grin2b expression in adult mice. This indicates the cerebellum may serve as an important brain region that is susceptible to long-term molecular changes after AIE.
Assuntos
Consumo de Bebidas Alcoólicas , Etanol , Animais , Feminino , Masculino , Camundongos , Consumo de Bebidas Alcoólicas/psicologia , Cerebelo , Etanol/farmacologia , Proteína do X Frágil da Deficiência Intelectual , Camundongos Endogâmicos C57BL , RNA Mensageiro , EnvelhecimentoRESUMO
We previously discovered using transcriptomics that rats undergoing withdrawal after chronic ethanol exposure had increased expression of several genes encoding RNA splicing factors in the hippocampus. Here, we examined RNA splicing in the rat hippocampus during withdrawal from chronic ethanol exposure and in postmortem hippocampus of human subjects diagnosed with alcohol use disorder (AUD). We found that expression of the gene encoding the splicing factor, poly r(C) binding protein 1 (PCBP1), was elevated in the hippocampus of rats during withdrawal after chronic ethanol exposure and AUD subjects. We next analyzed the rat RNA-Seq data for differentially expressed (DE) exon junctions. One gene, Hapln2, had increased usage of a novel 3' splice site in exon 4 during withdrawal. This splice site was conserved in human HAPLN2 and was used more frequently in the hippocampus of AUD compared to control subjects. To establish a functional role for PCBP1 in HAPLN2 splicing, we performed RNA immunoprecipitation (RIP) with a PCBP1 antibody in rat and human hippocampus, which showed enriched PCBP1 association near the HAPLN2 exon 4 3' splice site in the hippocampus of rats during ethanol withdrawal and AUD subjects. Our results indicate a conserved role for the splicing factor PCBP1 in aberrant splicing of HAPLN2 after chronic ethanol exposure. As the HAPLN2 gene encodes an extracellular matrix protein involved in nerve conduction velocity, use of this alternative splice site is predicted to result in loss of protein function that could negatively impact hippocampal function in AUD.
Assuntos
Alcoolismo , Sítios de Splice de RNA , Humanos , Ratos , Animais , Splicing de RNA/genética , Etanol/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Alcoolismo/genética , Alcoolismo/metabolismo , Hipocampo/metabolismo , Processamento Alternativo/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismoRESUMO
Binge drinking is one of the most common patterns (more than 90%) of alcohol consumption by young people. During adolescence, the brain undergoes maturational changes that influence behavioral control and affective behaviors, such as cerebellar brain volume and function in adulthood. We investigated long-term impacts of adolescent binge ethanol exposure on affective and exploratory behaviors and cerebellar gene expression in adult male and female mice. Further, the cerebellum is increasingly recognized as a brain region integrating a multitude of behaviors that span from the traditional primary sensory-motor to affective functions, such as anxiety and stress reactivity. Therefore, we investigated the persistent effects of adolescent intermittent ethanol (AIE) on exploratory and affective behaviors and began to elucidate the role of the cerebellum in these behaviors through excitatory signaling gene expression. We exposed C57BL/6J mice to AIE or air (control) vapor inhalation from postnatal day 28-42. After prolonged abstinence (>34 days), in young adulthood (PND 77+) we assessed behavior in the open field, light/dark, tail suspension, and forced swim stress tests to determine changes in affective behaviors including anxiety-like, depressive-like, and stress reactivity behavior. Excitatory signaling gene mRNA levels of fragile X messenger ribonucleoprotein ( FMR1) , glutamate receptors ( Grin2a , Grin2B and Grm5 ) and excitatory synaptic markers (PSD-95 and Eaat1) were measured in the cerebellum of adult control and AIE-exposed mice. AIE-exposed mice showed decreased exploratory behaviors in the open field test (OFT) where both sexes show reduced ambulation, however only females exhibited a reduction in rearing. Additionally, in the OFT, AIE-exposed females also exhibited increased anxiety-like behavior (entries to center zone). In the forced swim stress test, AIE-exposed male mice, but not females, spent less time immobile compared to their same-sex controls, indicative of sex-specific changes in stress reactivity. Male and female AIE-exposed mice showed increased Grin2B (Glutamate Ionotropic Receptor NMDA Type Subunit 2B) mRNA levels in the cerebellum compared to their same-sex controls. Together, these data show that adolescent binge-like ethanol exposure altered both exploratory and affective behaviors in a sex-specific manner and modified cerebellar Grin2B expression in adult mice. This indicates the cerebellum may serve as an important brain region that is susceptible to long-term molecular changes after AIE. Highlights: Adolescent intermittent ethanol (AIE) exposure decreased exploratory behavior in adult male and female mice.In females, but not males, AIE increased anxiety-like behavior.In males, but not females, AIE reduced stress reactivity in adulthood.These findings indicate sex differences in the enduring effects of AIE on exploratory and affective behaviors. Cerebellar Grin2B mRNA levels were increased in adulthood in both male and female AIE-exposed mice. These findings add to the small, but growing literature on behavioral AIE effects in mice, and establish cerebellar excitatory synaptic gene expression as an enduring effect of adolescent ethanol exposure.
RESUMO
Alcohol use disorder (AUD) has a complex, multifactorial etiology involving dysregulation across several brain regions and peripheral organs. Acute and chronic alcohol consumption cause epigenetic modifications in these systems, which underlie changes in gene expression and subsequently, the emergence of pathophysiological phenotypes associated with AUD. One such epigenetic mechanism is methylation, which can occur on DNA, histones, and RNA. Methylation relies on one carbon metabolism to generate methyl groups, which can then be transferred to acceptor substrates. While DNA methylation of particular genes generally represses transcription, methylation of histones and RNA can have bidirectional effects on gene expression. This review summarizes one carbon metabolism and the mechanisms behind methylation of DNA, histones, and RNA. We discuss the field's findings regarding alcohol's global and gene-specific effects on methylation in the brain and liver and the resulting phenotypes characteristic of AUD.
RESUMO
Alcohol Use Disorder (AUD) is a multifaceted relapsing disorder that is commonly comorbid with psychiatric disorders, including anxiety. Alcohol exposure produces a plethora of effects on neurobiology. Currently, therapeutic strategies are limited, and only a few treatments - disulfiram, acamprosate, and naltrexone - are available. Given the complexity of this disorder, there is a great need for the identification of novel targets to develop new pharmacotherapy. The GABAergic system, the primary inhibitory system in the brain, is one of the well-known targets for alcohol and is responsible for the anxiolytic effects of alcohol. Interestingly, GABAergic neurotransmission is fine-tuned by neuroactive steroids that exert a regulatory role on several endocrine systems involved in neuropsychiatric disorders including AUD. Mounting evidence indicates that alcohol alters the biosynthesis of neurosteroids, whereas acute alcohol increases and chronic alcohol decreases allopregnanolone levels. Our recent work highlighted that chronic alcohol-induced changes in neurosteroid levels are mediated by epigenetic modifications, e.g., DNA methylation, affecting key enzymes involved in neurosteroid biosynthesis. These changes were associated with changes in GABAA receptor subunit expression, suggesting an imbalance between excitatory and inhibitory signaling in AUD. This review will recapitulate the role of neurosteroids in the regulation of the neuroendocrine system, highlight their role in the observed allostatic load in AUD, and develop a framework from mechanisms to potential pharmacotherapy.
Assuntos
Alcoolismo , Neuroesteroides , Humanos , Pregnanolona/metabolismo , Alcoolismo/tratamento farmacológico , Receptores de GABA-A/metabolismo , Ansiedade , EtanolRESUMO
Positive effects of alcohol drinking such as anxiolysis and euphoria appear to be a crucial factor in the initiation and maintenance of alcohol use disorder (AUD). However, the mechanisms that lead from chromatin reorganization to transcriptomic changes after acute ethanol exposure remain unknown. Here, we used Assay for Transposase-Accessible Chromatin followed by high throughput sequencing (ATAC-seq) and RNA-seq to investigate epigenomic and transcriptomic changes that underlie anxiolytic effects of acute ethanol using an animal model. Analysis of ATAC-seq data revealed an overall open or permissive chromatin state that was associated with transcriptomic changes in the amygdala after acute ethanol exposure. We identified a candidate gene, Hif3a (Hypoxia-inducible factor 3, alpha subunit), that had 'open' chromatin regions (ATAC-seq peaks), associated with significantly increased active epigenetic histone acetylation marks and decreased DNA methylation at these regions. The mRNA levels of Hif3a were increased by acute ethanol exposure, but decreased in the amygdala during withdrawal after chronic ethanol exposure. Knockdown of Hif3a expression in the central nucleus of amygdala attenuated acute ethanol-induced increases in Hif3a mRNA levels and blocked anxiolysis in rats. These data indicate that chromatin accessibility and transcriptomic signatures in the amygdala after acute ethanol exposure underlie anxiolysis and possibly prime the chromatin for the development of AUD.
Assuntos
Alcoolismo , Epigênese Genética , Animais , Ratos , Epigênese Genética/genética , Etanol/farmacologia , Cromatina , Perfilação da Expressão Gênica , Alcoolismo/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genéticaRESUMO
Excessive alcohol intake, e.g., binge drinking, is a serious and mounting public health problem in the United States and throughout the world. Hence the need for novel insights into the underlying neurobiology that may help improve prevention and therapeutic strategies. Therefore, our group employed a darkness-induced alcohol intake protocol to define the reward deficiency domains of alcohol and other substance use disorders in terms of reward pathways' reduced dopamine signaling and its restoration via specifically-designed therapeutic compounds. It has been determined that KCNK13 and RASGRF2 genes, respectively, code for potassium two pore domain channel subfamily K member 13 and Ras-specific guanine nucleotide-releasing factor 2, and both genes have important dopamine-related functions pertaining to alcohol binge drinking. We present a hypothesis that identification of KCNK13 and RASGRF2 genes' risk polymorphism, coupled with genetic addiction risk score (GARS)-guided precision pro-dopamine regulation, will mitigate binge alcohol drinking. Accordingly, we review published reports on the benefits of this unique approach and provide data on favorable outcomes for both binge-drinking animals and drunk drivers, including reductions in alcohol intake and prevention of relapse to drinking behavior. Since driving under the influence of alcohol often leads to incarceration rather than rehabilitation, there is converging evidence to support the utilization of GARS with or without KCNK13 and RASGRF2 risk polymorphism in the legal arena, whereby the argument that "determinism" overrides the "free will" account may be a plausible defense strategy. Obviously, this type of research is tantamount to helping resolve a major problem related to polydrug abuse.
RESUMO
Background: Alcohol use disorder (AUD) is a complex and chronic relapsing brain disease, which is often co-morbid with psychiatric disorders such as anxiety and depression. AUD phenotypes differ in men and women. Although genetic factors play an important role in its pathophysiology, epidemiologic evidence suggests that during prenatal development, individuals are more vulnerable to the negative effects of environmental factors that may predispose them to AUD later in life. We explored the effects of prenatal stress on the development of AUD phenotypes as well as anxiety- and depression-like behaviors using rat model. Methods: In this study, timed-pregnant Sprague Dawley dams were used. Dams in the control group were left undisturbed throughout gestation, whereas dams in stress groups were either subjected to protracted or acute restraint stress under bright light. At adulthood, the anxiety-like, ethanol drinking, and sucrose drinking behaviors were measured using the Light/Dark Box test and two-bottle free-choice procedure. Results: Compared to the control group, both the male and female offspring in the stress groups exhibited anxiety-like behavior and consumed significantly higher amounts of ethanol in which the acute stress group demonstrated the higher ethanol preference. Moreover, male but not female offspring from the stress groups had decreased sucrose preferences. Conclusion: These findings suggest that protracted and acute prenatal stress in late pregnancy can induce in anxiety-, depressive-like behaviors, and excessive ethanol intake in adult offspring.
RESUMO
Adolescent binge drinking is a major risk factor for psychiatric disorders later in life including alcohol use disorder. Adolescent alcohol exposure induces epigenetic reprogramming at the enhancer region of the activity-regulated cytoskeleton-associated protein (Arc) immediate-early gene, known as synaptic activity response element (SARE), and decreases Arc expression in the amygdala of both rodents and humans. The causal role of amygdalar epigenomic regulation at Arc SARE in adult anxiety and drinking after adolescent alcohol exposure is unknown. Here, we show that dCas9-P300 increases histone acetylation at the Arc SARE and normalizes deficits in Arc expression, leading to attenuation of adult anxiety and excessive alcohol drinking in a rat model of adolescent alcohol exposure. Conversely, dCas9-KRAB increases repressive histone methylation at the Arc SARE, decreases Arc expression, and produces anxiety and alcohol drinking in control rats. These results demonstrate that epigenomic editing in the amygdala can ameliorate adult psychopathology after adolescent alcohol exposure.
Assuntos
Alcoolismo , Epigenômica , Adolescente , Alcoolismo/genética , Animais , Ansiedade/genética , Etanol/efeitos adversos , Histonas/metabolismo , Humanos , RatosRESUMO
Noncoding RNAs (ncRNAs) represent the majority of the transcriptome and play important roles in regulating neuronal functions. ncRNAs are exceptionally diverse in both structure and function and include enhancer RNAs, long ncRNAs, and microRNAs, all of which demonstrate specific temporal and regional expression in the brain. Here, we review recent studies demonstrating that ncRNAs modulate chromatin structure, act as chaperone molecules, and contribute to synaptic remodeling and behavior. In addition, we discuss ncRNA function within the context of neuropsychiatric diseases, particularly focusing on addiction and schizophrenia, and the recent methodological developments that allow for better understanding of ncRNA function in the brain. Overall, ncRNAs represent an underrecognized molecular contributor to complex neuronal processes underlying neuropsychiatric disorders.
Assuntos
MicroRNAs , Transtornos Neurocognitivos/genética , RNA Longo não Codificante , Encéfalo , Humanos , RNA Longo não Codificante/genética , RNA não Traduzido/genéticaRESUMO
Alcohol use disorder (AUD) constitutes a major burden to global health. Recently, the translational success of animal models of AUD has come under increased scrutiny. Efforts to refine models to gain a more precise understanding of the neurobiology of addiction are warranted. Appetitive responding for ethanol (seeking) and its consumption (taking) are governed by distinct neurobiological mechanisms. However, consumption is often inferred from appetitive responding in operant ethanol self-administration paradigms, preventing identification of distinct experimental effects on seeking and taking. In the present study, male Long-Evans, Wistar, and Sprague-Dawley rats were trained to lever press for ethanol using a lickometer-equipped system that precisely measures both appetitive and consummatory behavior. Three distinct operant phenotypes emerged during training: 1) Drinkers, who lever press and consume ethanol; 2) Responders, who lever press but consume little to no ethanol; and 3) Non-responders, who do not lever press. While the prevalence of each phenotype differed across strains, appetitive and consummatory behavior was similar across strains within each phenotype. Appetitive and consummatory behaviors were significantly correlated in Drinkers, but not Responders. Analysis of drinking microstructure showed that greater consumption in Drinkers relative to Responders is due to increased incentive for ethanol rather than increased palatability. Importantly, withdrawal from chronic ethanol exposure resulted in a significant increase in appetitive responding in both Drinkers and Responders, but only Drinkers exhibited a concomitant increase in ethanol consumption. Together, these data reveal important strain differences in appetitive and consummatory responding for ethanol and uncover the presence of distinct operant phenotypes.
Assuntos
Consumo de Bebidas Alcoólicas/psicologia , Alcoolismo/psicologia , Comportamento Apetitivo/fisiologia , Comportamento Aditivo/psicologia , Comportamento Animal/fisiologia , Condicionamento Operante/fisiologia , Comportamento Consumatório/fisiologia , Comportamento de Procura de Droga/fisiologia , Etanol/administração & dosagem , Fenótipo , Autoadministração/psicologia , Animais , Modelos Animais de Doenças , Masculino , Ratos Long-Evans , Ratos Sprague-Dawley , Ratos WistarRESUMO
BACKGROUND: Alcohol intoxication produces ataxia by affecting the cerebellum, which coordinates movements. Fragile X mental retardation (FMR) protein is a complex regulator of RNA and synaptic plasticity implicated in fragile X-associated tremor/ataxia syndrome, which features ataxia and increased Fmr1 mRNA expression resulting from epigenetic dysregulation of FMRP. We recently demonstrated that acute ethanol-induced ataxia is associated with increased cerebellar Fmr1 gene expression via histone modifications in rats, but it is unknown whether similar behavioral and molecular changes occur following chronic ethanol exposure. Here, we investigated the effects of chronic ethanol exposure on ataxia and epigenetically regulated changes in Fmr1 expression in the cerebellum. METHODS: Male adult Sprague-Dawley rats were trained on the accelerating rotarod and then fed with chronic ethanol or a control Lieber-DeCarli diet while undergoing periodic behavioral testing for ataxia during ethanol exposure and withdrawal. Cerebellar tissues were analyzed for expression of the Fmr1 gene and its targets using a real-time quantitative polymerase chain reaction assay. The epigenetic regulation of Fmr1 was also investigated using a chromatin immunoprecipitation assay. RESULTS: Ataxic behavior measured by the accelerating rotarod behavioral test developed during chronic ethanol treatment and persisted at both the 8-h and 24-h withdrawal time points compared to control diet-fed rats. In addition, chronic ethanol treatment resulted in up-regulated expression of Fmr1 mRNA and increased activating epigenetic marks H3K27 acetylation and H3K4 trimethylation at 2 sites within the Fmr1 promoter. Finally, measurement of the expression of relevant FMRP mRNA targets in the cerebellum showed that chronic ethanol up-regulated cAMP response element binding (CREB) Creb1, Psd95, Grm5, and Grin2b mRNA expression without altering Grin2a, Eaa1, or histone acetyltransferases CREB binding protein (Cbp) or p300 mRNA transcripts. CONCLUSIONS: These results suggest that epigenetic regulation of Fmr1 and subsequent FMRP regulation of target mRNA transcripts constitute neuroadaptations in the cerebellum that may underlie the persistence of ataxic behavior during chronic ethanol exposure and withdrawal.
Assuntos
Depressores do Sistema Nervoso Central/efeitos adversos , Ataxia Cerebelar/induzido quimicamente , Cerebelo/efeitos dos fármacos , Etanol/efeitos adversos , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Intoxicação Alcoólica/etiologia , Intoxicação Alcoólica/metabolismo , Animais , Depressores do Sistema Nervoso Central/administração & dosagem , Ataxia Cerebelar/metabolismo , Cerebelo/metabolismo , Epigênese Genética/efeitos dos fármacos , Etanol/administração & dosagem , Código das Histonas/efeitos dos fármacos , Masculino , Ratos Sprague-DawleyRESUMO
Alcohol use disorder (AUD) is highly comorbid with depression. Withdrawal from chronic alcohol drinking results in depression and understanding brain molecular mechanisms that drive withdrawal-related depression is important for finding new drug targets to treat these comorbid conditions. Here, we performed RNA sequencing of the rat hippocampus during withdrawal from chronic alcohol drinking to discover key signaling pathways involved in alcohol withdrawal-related depressive-like behavior. Data were analyzed by weighted gene co-expression network analysis to identify several modules of co-expressed genes that could have a common underlying regulatory mechanism. One of the hub, or highly interconnected, genes in module 1 that increased during alcohol withdrawal was the transcription factor, signal transducer and activator of transcription 3 (Stat3), a known regulator of immune gene expression. Total and phosphorylated (p)STAT3 protein levels were also increased in the hippocampus during withdrawal after chronic alcohol exposure. Further, pSTAT3 binding was enriched at the module 1 genes Gfap, Tnfrsf1a, and Socs3 during alcohol withdrawal. Notably, pSTAT3 and its target genes were elevated in the postmortem hippocampus of human subjects with AUD when compared with control subjects. To determine the behavioral relevance of STAT3 activation during alcohol withdrawal, we treated rats with the STAT3 inhibitor stattic and tested for sucrose preference as a measure of anhedonia. STAT3 inhibition alleviated alcohol withdrawal-induced anhedonia. These results demonstrate activation of STAT3 signaling in the hippocampus during alcohol withdrawal in rats and in human AUD subjects, and suggest that STAT3 could be a therapeutic target for reducing comorbid AUD and depression.
Assuntos
Fator de Transcrição STAT3 , Transcriptoma , Anedonia , Animais , Etanol , Hipocampo/metabolismo , Ratos , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismoRESUMO
Alcohol consumption is mediated by several important neuromodulatory systems, including the endocannabinoid and neuropeptide Y (NPY) systems in the limbic brain circuitry. However, molecular mechanisms through which cannabinoid-1 (CB1) receptors regulate alcohol consumption are still unclear. Here, we investigated the role of the CB1 receptor-mediated downstream regulation of NPY via epigenetic mechanisms in the amygdala. Alcohol drinking behavior was measured in adult male C57BL/6J mice treated with a CB1 receptor neutral antagonist AM4113 using a two-bottle choice paradigm while anxiety-like behavior was assessed in the light-dark box (LDB) test. The CB1 receptor-mediated changes in the protein levels of phosphorylated cAMP-responsive element binding protein (pCREB), CREB binding protein (CBP), H3K9ac, H3K14ac and NPY, and the mRNA levels of Creb1, Cbp, and Npy were measured in amygdaloid brain structures. Npy-specific changes in the levels of acetylated histone (H3K9/14ac) and CBP in the amygdala were also measured. We found that the pharmacological blockade of CB1 receptors with AM4113 reduced alcohol consumption and, in an ethanol-naïve cohort, reduced anxiety-like behavior in the LDB test. Treatment with AM4113 also increased the mRNA levels of Creb1 and Cbp in the amygdala as well as the protein levels of pCREB, CBP, H3K9ac and H3K14ac in the central and medial nucleus of amygdala, but not in the basolateral amygdala. Additionally, AM4113 treatment increased occupancy of CBP and H3K9/14ac at the Npy gene promoter, leading to an increase in both mRNA and protein levels of NPY in the amygdala. These novel findings suggest that CB1 receptor-mediated CREB signaling plays an important role in the modulation of NPY function through an epigenetic mechanism and further support the potential use of CB1 receptor neutral antagonists for the treatment of alcohol use disorder.
Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Etanol/farmacologia , Neuropeptídeo Y/metabolismo , Receptor CB1 de Canabinoide/antagonistas & inibidores , Tonsila do Cerebelo/metabolismo , Animais , Ansiedade/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Masculino , Camundongos , Fosforilação/efeitos dos fármacos , Pirazóis/farmacologiaRESUMO
New insights into the pathophysiology of psychiatric disorders suggest the existence of a complex interplay between genetics and environment. This notion is supported by evidence suggesting that exposure to stress during pregnancy exerts profound effects on the neurodevelopment and behavior of the offspring and predisposes them to psychiatric disorders later in life. Accumulated evidence suggests that vulnerability to psychiatric disorders may result from permanent negative effects of long-term changes in synaptic plasticity due to altered epigenetic mechanisms (histone modifications and DNA methylation) that lead to condensed chromatin architecture, thereby decreasing the expression of candidate genes during early brain development. In this chapter, we have summarized the literature of clinical studies on psychiatric disorders induced by maternal stress during pregnancy. We also discussed the epigenetic alterations of gene regulations induced by prenatal stress. Because the clinical manifestations of psychiatric disorders are complex, it is obvious that the biological progression of these diseases cannot be studied only in postmortem brains of patients and the use of animal models is required. Therefore, in this chapter, we have introduced a well-established mouse model of prenatal stress (PRS) generated in restrained pregnant dams. The behavioral phenotypes of the offspring (PRS mice) born to the stressed dam and underlying epigenetic changes in key molecules related to synaptic activity were described and highlighted. PRS mice may serve as a useful model for investigating the pathogenesis of psychiatric disorders and may be a useful tool for screening for the potential compounds that may normalize aberrant epigenetic mechanisms induced by prenatal stress.