Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39300855

RESUMO

ADHD is a prevalent childhood behavioral problem. Early ADHD identification is essential towards addressing the disorder and minimizing its negative impact on school, career, relationships, as well as general well-being. The present ADHD diagnosis relies primarily on an emotional assessment which can be readily influenced by clinical expertise and lacks a basis of objective markers. In this paper, an innovative IoT based ADHD detection is proposed using an EEG signal. To the input EEG signal, the min-max normalization technique is processed. Features are extracted as the subsequent step, where improved fuzzy feature, in which the entropy is estimated to increase the effectiveness of recognizing the vector along with, fractal dimension, wavelet transform and non-linear features are extracted. Also, proposes the new hybrid PUDMO algorithm to select the optimal features from the extracted feature set. Subsequently, the selected features are fed to the proposed hybrid detection system that including IDBN and LSTM classifier to detect whether it is ADHD or not. Further, the weights of both classifiers are tuned optimally as per the hybrid PUDMO algorithm to enhance the detection performance. The PUDMO achieved an accuracy of 0.9649 in the best statistical metric, compared to the SLO's 0.8266, SOA's 0.8201, SMA's 0.8060, BRO's 0.8563, DE's 0.8083, POA's 0.8537, and DMOA's 0.8647, respectively. Thus, the assessments and detection help the clinicians to take appropriate decision.

2.
Sci Rep ; 12(1): 20330, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434060

RESUMO

Accurate and reliable lung nodule segmentation in computed tomography (CT) images is required for early diagnosis of lung cancer. Some of the difficulties in detecting lung nodules include the various types and shapes of lung nodules, lung nodules near other lung structures, and similar visual aspects. This study proposes a new model named Lung_PAYNet, a pyramidal attention-based architecture, for improved lung nodule segmentation in low-dose CT images. In this architecture, the encoder and decoder are designed using an inverted residual block and swish activation function. It also employs a feature pyramid attention network between the encoder and decoder to extract exact dense features for pixel classification. The proposed architecture was compared to the existing UNet architecture, and the proposed methodology yielded significant results. The proposed model was comprehensively trained and validated using the LIDC-IDRI dataset available in the public domain. The experimental results revealed that the Lung_PAYNet delivered remarkable segmentation with a Dice similarity coefficient of 95.7%, mIOU of 91.75%, sensitivity of 92.57%, and precision of 96.75%.


Assuntos
Aprendizado Profundo , Redes Neurais de Computação , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Tórax
3.
J Med Phys ; 47(1): 1-9, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548037

RESUMO

Purpose: In the field of medical diagnosis, deep learning-based computer-aided detection of diseases will reduce the burden of physicians in the diagnosis of diseases especially in the case of lung cancer nodule classification. Materials and Methods: A hybridized model which integrates deep features from Residual Neural Network using transfer learning and handcrafted features from the histogram of oriented gradients feature descriptor is proposed to classify the lung nodules as benign or malignant. The intrinsic convolutional neural network (CNN) features have been incorporated and they can resolve the drawbacks of handcrafted features that do not completely reflect the specific characteristics of a nodule. In the meantime, they also reduce the need for a large-scale annotated dataset for CNNs. For classifying malignant nodules and benign nodules, radial basis function support vector machine is used. The proposed hybridized model is evaluated on the LIDC-IDRI dataset. Results: It has achieved an accuracy of 97.53%, sensitivity of 98.62%, specificity of 96.88%, precision of 95.04%, F1 score of 0.9679, false-positive rate of 3.117%, and false-negative rate of 1.38% and has been compared with other state of the art techniques. Conclusions: The performance of the proposed hybridized feature-based classification technique is better than the deep features-based classification technique in lung nodule classification.

4.
J Med Syst ; 44(1): 30, 2019 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-31838610

RESUMO

Breast cancer is one of the leading causes of cancer death among women in worldwide. Early diagnosis of breast cancer improves the chance of survival by aiding proper clinical treatments. The digital mammography examination helps in diagnosing the breast cancer at its earlier stage. In this paper, Multiscale All Convolutional Neural Network (MA-CNN) is developed to assist the radiologist in diagnosing the breast cancer effectively. MA-CNN is a convolutional neural network-based approach that classifies mammogram images accurately. Convolutional neural networks are excellent in extracting the task specific features, since the feature learning is associated with classification task in order to attain the improved performance. The proposed approach automatically categorizes the mammographic images on mini-MIAS dataset into normal, malignant and benign classes. This model improves the accuracy of the classification system by fusing the wider context of information using multiscale filters without negotiating the computation speed. Experimental results show that MA-CNN is a powerful tool for diagnosing breast cancer by means of classifying the mammogram images with overall sensitivity of 96% and 0.99 AUC.


Assuntos
Neoplasias da Mama/patologia , Interpretação de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Mamografia/métodos , Redes Neurais de Computação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA