Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 10(3)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806870

RESUMO

The less productive soils present one of the major problems in wheat production. Because of unfavorable conditions, halomorphic soils could be intensively utilized using ameliorative measures and by selecting suitable stress tolerant wheat genotypes. This study examined the responses of ten winter wheat cultivars on stressful conditions of halomorphic soil, solonetz type in Banat, Serbia. The wheat genotypes were grown in field trails of control and treatments with two soil amelioration levels using phosphor gypsum, in amounts of 25 and 50 tha-1. Across two vegetation seasons, phenotypic variability and genotype by environment interaction (GEI) for yield traits of wheat were studied. The additive main effects and multiplicative interaction (AMMI) models were used to study the GEI. AMMI analyses revealed significant genotype and environmental effects, as well as GEI effect. Analysis of GEI using the IPCA (Interaction Principal Components) analysis showed a statistical significance of the first two main components, IPCA1 and IPCA2 for yield, which jointly explained 70% of GEI variation. First source of variation IPCA1 explained 41.15% of the GEI for the grain weight per plant and 78.54% for the harvest index. The results revealed that wheat genotypes responded differently to stressful conditions and ameliorative measures.

2.
Front Plant Sci ; 10: 486, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31110511

RESUMO

Terrestrial Laser Scanning (TLS) can be used to monitor plant dynamics with a frequency of several times per hour and with sub-centimeter accuracy, regardless of external lighting conditions. TLS point cloud time series measured at short intervals produce large quantities of data requiring fast processing techniques. These must be robust to the noise inherent in point clouds. This study presents a general framework for monitoring circadian rhythm in plant movements from TLS time series. Framework performance was evaluated using TLS time series collected from two Norway maples (Acer platanoides) and a control target, a lamppost. The results showed that the processing framework presented can capture a plant's circadian rhythm in crown and branches down to a spatial resolution of 1 cm. The largest movements in both Norway maples were observed before sunrise and at their crowns' outer edges. The individual cluster movements were up to 0.17 m (99th percentile) for the taller Norway maple and up to 0.11 m (99th percentile) for the smaller tree from their initial positions before sunset.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA