Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 399: 130590, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490462

RESUMO

Comprehensive and dynamic studies of cellulose pyrolysis reaction mechanisms are crucial in designing experiments and processes with enhanced safety, efficiency, and sustainability. The details of the pyrolysis mechanism are not readily available from experiments but can be better described via molecular dynamics (MD) simulations. However, the large size of cellulose molecules challenges accurate ab initio MD simulations, while existing reactive force field parameters lack precision. In this work, precise ab initio deep learning potentials field (DPLF) are developed and applied in MD simulations to facilitate the study of cellulose pyrolysis mechanisms. The formation mechanism and production rate of both valuable and greenhouse products from cellulose at temperatures larger than 1073 K are comprehensively described. This study underscores the critical role of advanced simulation techniques, particularly DLPF, in achieving efficient and accurate understanding of cellulose pyrolysis mechanisms, thus promoting wider industrial applications.


Assuntos
Celulose , Aprendizado Profundo , Pirólise , Simulação de Dinâmica Molecular , Temperatura
2.
Mater Horiz ; 11(5): 1126-1151, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38112198

RESUMO

Covalent organic frameworks (COFs), a new and developing class of porous framework materials, are considered a type of promising carrier for the integration and delivery of bioactives, which have diverse fascinating merits, such as a large specific surface area, designable and specific porosity, stable and orderly framework structure, and various active sites. However, owing to the significant differences among bioactives (including drugs, proteins, nucleic acid, and exosomes), such as size, structure, and physicochemical properties, the interaction between COFs and bioactives also varies. In this review, we firstly summarize three strategies for the construction of single or hybrid COF-based matrices for the delivery of cargos, including encapsulation, covalent binding, and coordination bonding. Besides, their smart response release behaviors are also categorized. Subsequently, the applications of cargo@COF biocomposites in biomedicine are comprehensively summarized, including tumor therapy, central nervous system (CNS) modulation, biomarker analysis, bioimaging, and anti-bacterial therapy. Finally, the challenges and opportunities in this field are briefly discussed.


Assuntos
Exossomos , Estruturas Metalorgânicas , Ácidos Nucleicos , Sistema Nervoso Central , Ocupações em Saúde
3.
Materials (Basel) ; 16(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37895648

RESUMO

In order to attain phosphor ceramics with a high Color-Rendering Index (CRI), samples with the composition of Y0.997-xRexCe0.003)3(Al0.9748 Mn2+0.024Cr3+0.0012)5O12(Rex = 0, Gd0.333, Gd0.666, Gd0.997, Tb0.333, Tb0.666, Tb0.997 and Lu0.997 were prepared by solid-state reaction and vacuum sintering, and exhibited potential for high-quality, solid-state lighting. Doping with Cr3+ and Mn2+ effectively enhanced the red component of Ce3+ spectra through the intense energy transfer from Ce3+ ions to Mn2+/Cr3+ ions. The crystal field splitting of [GdO8] and [TbO8] was more extensive than that of [YO8], causing a massive redshift in the Ce3+ emission peaks from 542 to 561 and 595 nm, while [LuO8] had an opposite effect and caused a blueshift with a peak position at 512 nm. White LED devices incorporating Ce/Mn/Cr: (Gd0.333Y0.664)3Al5O12 phosphor ceramic exhibited a high CRI of 83.97, highlighting the potential for enhancing the red-light component of white LED lighting.

4.
Ultrason Sonochem ; 98: 106519, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37467548

RESUMO

Using natural dyes in dyeing industries becomes an alternative to synthetic dyes, which are known to contain harmful chemicals that can pose risks to the environment and human health. This study involves the extraction of yellow dye from Cassia alata flower petals, optimization of the extraction process using an ultrasonic bath (40 KHz and an input power of 500), ultrasonic probe (390 W, 455 W, 520 W, 585 W, and 650 W), and conventional heating (heating mantle with 30 °C, 40 °C, 50 °C, 60 °C, and 70 °C), characterization of the dye, as well as dyeing (cotton, silk, and leather) without using a mordant. The extracted yellow dye was further evaluated to determine its antibacterial activity against skin bacteria. Dye extraction optimization using UV-Visible spectrophotometric analysis revealed that the maximum yellow color in methanol extract (287 and 479 nm) was obtained at 50 °C for 45 min using ultrasonic water bath extraction, followed by the ultrasonic probe and direct heating. Based on the FTIR spectra, it is evident that OH is present at approximately 3300 cm-1, while CH stretches at around 2900 cm-1. A characteristic peak at 1608 cm-1 bears a striking similarity to anthraquinonoid-based compounds. Also, using the ultrasonic water bath dyeing technique at 50 °C for 45 min, the yellow color of cotton, silk, and leather was dyed optimally. Due to effective color removal after two washings with boiling soap liquid, the dyed cotton and silk fabric displayed good washing and rubbing fastness. Regarding antibacterial activity, the dye was highly active against all pathogens after extraction in methanol. The maximum inhibition was observed against Pseudomonas sp. with a MIC value of 1.56 mg/ml.


Assuntos
Cassia , Humanos , Corantes/farmacologia , Corantes/química , Metanol , Seda , Flores , Antibacterianos/farmacologia , Antibacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água
5.
Adv Sci (Weinh) ; 10(9): e2205292, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36658693

RESUMO

Since its discovery in 2004, graphene is increasingly applied in various fields owing to its unique properties. Graphene application in the biomedical domain is promising and intriguing as an emerging 2D material with a high surface area, good mechanical properties, and unrivalled electronic and physical properties. This review summarizes six typical synthesis methods to fabricate pristine graphene (p-G), graphene oxide (GO), and reduced graphene oxide (rGO), followed by characterization techniques to examine the obtained graphene materials. As bare graphene is generally undesirable in vivo and in vitro, functionalization methods to reduce toxicity, increase biocompatibility, and provide more functionalities are demonstrated. Subsequently, in vivo and in vitro behaviors of various bare and functionalized graphene materials are discussed to evaluate the functionalization effects. Reasonable control of dose (<20 mg kg-1 ), sizes (50-1000 nm), and functionalization methods for in vivo application are advantageous. Then, the key biomedical applications based on graphene materials are discussed, coupled with the current challenges and outlooks of this growing field. In a broader sense, this review provides a comprehensive discussion on the synthesis, characterization, functionalization, evaluation, and application of p-G, GO, and rGO in the biomedical field, highlighting their recent advances and potential.


Assuntos
Grafite , Materiais Biocompatíveis
6.
Adv Mater ; 34(36): e2104113, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35451528

RESUMO

Owing to the rapid developments to improve the accuracy and efficiency of both experimental and computational investigative methodologies, the massive amounts of data generated have led the field of materials science into the fourth paradigm of data-driven scientific research. This transition requires the development of authoritative and up-to-date frameworks for data-driven approaches for material innovation. A critical discussion on the current advances in the data-driven discovery of materials with a focus on frameworks, machine-learning algorithms, material-specific databases, descriptors, and targeted applications in the field of inorganic materials is presented. Frameworks for rationalizing data-driven material innovation are described, and a critical review of essential subdisciplines is presented, including: i) advanced data-intensive strategies and machine-learning algorithms; ii) material databases and related tools and platforms for data generation and management; iii) commonly used molecular descriptors used in data-driven processes. Furthermore, an in-depth discussion on the broad applications of material innovation, such as energy conversion and storage, environmental decontamination, flexible electronics, optoelectronics, superconductors, metallic glasses, and magnetic materials, is provided. Finally, how these subdisciplines (with insights into the synergy of materials science, computational tools, and mathematics) support data-driven paradigms is outlined, and the opportunities and challenges in data-driven material innovation are highlighted.

7.
J Hazard Mater ; 424(Pt A): 126566, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34879537

RESUMO

The additional cost of Hg0 capture in coal-fired power plants has facilitated the demand for environmental pollutants mitigation material for Hg0 oxidation to Hg2+ for an ultra-low Hg emission technology. Herein, a suite of CeO2-based catalysts were investigated aiming at ultra-low gaseous Hg0 emission at coal-fired power stations. Gaseous elemental mercury is feasible to be catalytically oxidized to Hg2+. The co-regulated dispersion, exposure and defect sites on CeO2 (111) surface with 2 wt% Ce and 8 wt% Mo compositions on γ-Al2O3 was found to be the most promising catalyst demonstrating a high catalytic oxidation efficiency, a broad operating temperature range and a low activation energy. Specifically, it is shown that the oxidation of Hg0 on the Ce-based catalysts can be enhanced by the addition of Mo (up to 8 wt%) via promoting the CeO2 (111) surface dispersion and exposure. Moreover, insights into the Ce and Mo synergistic interactions showed that it facilitated the formation of defect-containing surface sites. Besides, the co-regulation of dispersion, exposure and defect sites on CeO2 (111) surface was further studied by DFT calculations. This study provides a feasible approach in optimization of CeO2-based catalysts for catalytic oxidation of Hg0 to achieve efficient removal of environmental pollutants.

8.
Front Nutr ; 8: 752207, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671634

RESUMO

The present work aimed to investigate the swelling behavior, in vitro digestion, and release of a hydrophobic bioactive compound, thymoquinone (TQ), loaded in Pickering emulsion incorporated in alginate-chitosan hydrogel beads using a simulated gastrointestinal model. In this study, oil-in-water Pickering emulsions of uniform micron droplet sizes were formulated using 20% red palm olein and 0.5% (w/v) cellulose nanocrystals-soy protein isolate (CNC/SPI) complex followed by encapsulation within beads. FT-IR was used to characterize the bonding between the alginate, chitosan, and Pickering emulsion. 2% (w/v) alginate-1% (w/v) chitosan hydrogel beads were found to be spherical with higher stability against structural deformation. The alginate-chitosan beads displayed excellent stability in simulated gastric fluid (SGF) with a low water uptake of ~19%. The hydrogel beads demonstrated a high swelling degree (85%) with a superior water uptake capacity of ~593% during intestinal digestion in simulated intestinal fluid (SIF). After exposure to SIF, the microstructure transformation was observed, causing erosion and degradation of alginate/chitosan wall materials. The release profile of TQ up to 83% was achieved in intestinal digestion, and the release behavior was dominated by diffusion via the bead swelling process. These results provided useful insight into the design of food-grade colloidal delivery systems using protein-polysaccharide complex-stabilized Pickering emulsions incorporated in alginate-chitosan hydrogel beads.

9.
Korean J Chem Eng ; 38(11): 2235-2246, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34522057

RESUMO

Catalytic pyrolysis offers a sustainable route to convert plastic wastes into fuel. We investigated the catalytic performance of coal ash (fly and bottom ash) at blending ratio of 5 wt%, and 15 wt% during pyrolysis of linear low-density polyethylene (LLDPE). The influence on activation energy and oil was characterized via thermogravimetric analyzer (TGA) and gas chromatography-mass spectrometry (GC-MS). Results have shown that 15 wt% bottom ash exhibited higher catalytic activity. The activation energy estimated by Coats-Redfern method decreased from 458.7 kJ·mol-1 to 437.8 kJ·mol-1, while the alicyclic hydrocarbon yield increased from 5.97% to 32.09%. This implies that CaO, which is abundant in bottom ash, could promote the conversion of LLDPE. Furthermore, a cradle-to-factory gate life cycle assessment was performed to investigate three scenarios (non-catalytic pyrolysis, 15 wt% fly ash, and 15 wt% bottom ash) of LLDPE conversion strategies via a normalization and weighting approach. It was found that LLDPE pyrolysis with 15 wt% bottom ash also showed the lowest normalized score of 2.83, implying the lowest environmental impact. This work has demonstrated that the recycling of coal ash, particularly bottom ash, as catalysts for LLDPE pyrolysis is effective.

10.
Front Genet ; 12: 669441, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093660

RESUMO

Human height is a polygenic trait, influenced by a large number of genomic loci. In the pre-genomic era, height prediction was based largely on parental height. More recent predictions of human height have made great strides by integrating genotypic data from large biobanks with improved statistical techniques. Nevertheless, recent studies have not leveraged parental height, an added feature that we hypothesized would offer complementary predictive value. In this study, we assessed the predictive power of polygenic risk scores (PRS) combined with the traditional parental height predictors. Our study analyzed genotypic data and parental height from 1,071 trios from the United Kingdom Biobank and 444 trios from the Framingham Heart Study. We explored a series of statistical models to fully evaluate the performance of several PRS constructed together with parental information and proposed a model we call PRS++ that includes gender, parental height, and PRSs of parents and proband. Our estimate of height with an R 2 of ∼0.82 is, to our knowledge, the most accurate estimate yet achieved for predicting human adult height. Without parental information, the R 2 from the best PRS-driven model is ∼0.73. In summary, using adult height prediction as an example, we demonstrated that traditional predictors still play important roles and merit integration into the current trends of intensive PRS approaches.

11.
Bioresour Technol ; 331: 124934, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33798864

RESUMO

This study investigates the potential of producing graphene oxide (GO) from biomass via green (comparatively) processing and the impact of graphitization temperature on GO quality. Our findings show that it is possible to convert biomass into highly pyrolytic biochar, followed by shear exfoliation to produce few-layer GO. However, pyrolysis temperature is key in ensuring that the biochar is suited for effective exfoliation. Low temperatures (<1000 °C) would preserve undesirable heterogenous, complex cellular structure of biomass whilst excessive temperatures (≥1300 °C) result in uncontrolled melting, coalescence and loss of functional groups. Results show 1200 °C to be the optimum graphitization temperature for miscanthus, where the resultant biochar is highly aromatic with sufficient functional groups to weaken van der Waals forces, thus facilitating exfoliation to form 6-layer GO with specific surface area of 545.3 m2g-1. This study demonstrates the potential of producing high quality, fit-for-purpose graphene materials from renewable sources.


Assuntos
Grafite , Pirólise , Biomassa , Carbono , Carvão Vegetal , Temperatura Alta , Temperatura
12.
Vaccines (Basel) ; 9(4)2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33916489

RESUMO

The highly infectious coronavirus disease 2019 (COVID-19) associated with the pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to become a global pandemic. At present, the world is relying mainly on containment and hygiene-related measures, as well as repurposed drugs to control the outbreak. The development of COVID-19 vaccines is crucial for the world to return to pre-pandemic normalcy, and a collective global effort has been invested into protection against SARS-CoV-2. As of March 2021, thirteen vaccines have been approved for application whilst over 90 vaccine candidates are under clinical trials. This review focuses on the development of COVID-19 vaccines and highlights the efficacy and vaccination reactions of the authorised vaccines. The mechanisms, storage, and dosage specification of vaccine candidates at the advanced stage of development are also critically reviewed together with considerations for potential challenges. Whilst the development of a vaccine is, in general, in its infancy, current progress is promising. However, the world population will have to continue to adapt to the "new normal" and practice social distancing and hygienic measures, at least until effective vaccines are available to the general public.

13.
Ultrason Sonochem ; 73: 105519, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33799111

RESUMO

Whilst graphene materials have become increasingly popular in recent years, the followed synthesis strategies face sustainability, environmental and quality challenges. This study proposes an effective, sustainable and scalable ultrasound-assisted mechano-chemical cracking method to produce graphene oxide (GO). A typical energy crop, miscanthus, was used as a carbon precursor and pyrolysed at 1200 °C before subjecting to edge-carboxylation via ball-milling in a CO2-induced environment. The resultant functionalised biochar was ultrasonically exfoliated in N-Methyl-2-pyrrolidone (NMP) and water to form GOs. The intermediate and end-products were characterised via X-ray diffraction (XRD), Raman, high-resolution transmission electron microscopy (HR-TEM) and atomic force microscopy (AFM) analyses. Results show that the proposed synthesis route can produce good quality and uniform GOs (8-10% monolayer), with up to 96% of GOs having three layers or lesser when NMP is used. Ultrasonication proved to be effective in propagating the self-repulsion of negatively-charged functional groups. Moreover, small amounts of graphene quantum dots were observed, illustrating the potential of producing various graphene materials via a single-step method. Whilst this study has only investigated utilising miscanthus, the current findings are promising and could expand the potential of producing good quality graphene materials from renewable sources via green synthesis routes.

14.
Chemosphere ; 274: 129702, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33529956

RESUMO

This investigation explores the efficacy of employing ultrasonic cavitation and coupling it with advanced oxidation processes (hydrogen peroxide and Fenton's reagent) for reducing the levels of total ammonia nitrogen in fish pond water containing Tilapia fishes. Ultrasonic cavitation is a phenomenon where the formation, growth and collapse of vaporous bubbles occur in a liquid medium producing highly reactive free radicals. Ultrasonic probe system (20 kHz with 750 W and 1000 W) was used to induce cavitation. Besides, to intensify the process, ultrasonic cavitation was coupled with hydrogen peroxide and Fenton's reagent. Using SERA colour indicator test kits, the levels of ammonium, nitrite and carbonate hardness were measured. The results obtained from this study clearly show that the advanced oxidation processes are more efficient in reducing the ammonium and nitrite levels in fish pond water than using ultrasound alone. The pH and carbonate hardness levels were not affected significantly by ultrasonic cavitation. The optimal treatment time and ultrasound power to treat the water samples were also established. Energy efficiency and cost analysis of this treatment have also been presented, indicating that ultrasonic cavitation coupled with hydrogen peroxide appears to be a promising technique for reducing total ammonia nitrogen levels in the fish pond water.


Assuntos
Lagoas , Purificação da Água , Animais , Peixes , Peróxido de Hidrogênio , Oxirredução , Ultrassom
15.
Ultrason Sonochem ; 69: 105258, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32702637

RESUMO

O/W nanoemulsions are isotropic colloidal systems constituted of oil droplets dispersed in continuous aqueous media and stabilised by surfactant molecules. Nanoemulsions hold applications in more widespread technological domains, more crucially in the pharmaceutical industry. Innovative nanoemulsion-based drug delivery system has been suggested as a powerful alternative strategy through the useful means of encapsulating, protecting, and delivering the poorly water-soluble bioactive components. Consequently, there is a need to generate an emulsion with small and consistent droplets. Diverse studies acknowledged that ultrasonic cavitation is a feasible and energy-efficient method in making pharmaceutical-grade nanoemulsions. This method offers more notable improvements in terms of stability with a lower Ostwald ripening rate. Meanwhile, a microstructured reactor, for instance, microchannel, has further been realised as an innovative technology that facilitates combinatorial approaches with the acceleration of reaction, analysis, and measurement. The recent breakthrough that has been achieved is the controlled generation of fine and monodispersed multiple emulsions through microstructured reactors. The small inner dimensions of microchannel display properties such as short diffusion paths and high specific interfacial areas, which increase the mass and heat transfer rates. Hence, the combination of ultrasonic cavitation with microstructures (microchannel) provides process intensification of creating a smaller monodispersed nanoemulsion system. This investigation is vital as it will then facilitate the creation of new nanoemulsion based drug delivery system continuously. Following this, the fabrication of microchannel and setup of its combination with ultrasound was conducted in the generation of O/W nanoemulsion, as well as optimisation to analyse the effect of varied operating parameters on the mean droplet diameter and dispersity of the nanoemulsion generated, besides monitoring the stability of the nanoemulsion. Scanning transmission electron microscopy (STEM) images were also carried out for the droplet size measurements. In short, the outcomes of this study are encouraging, which necessitates further investigations to be carried out to advance a better understanding of coupling microchannel with ultrasound to produce pharmaceutical-grade nanoemulsions.


Assuntos
Emulsões/química , Microquímica/instrumentação , Nanoestruturas/química , Óleo de Palmeira/química , Ultrassom/métodos , Água/química , Hexoses/química , Microquímica/métodos , Sonicação/métodos , Tensoativos
16.
Int J Hyg Environ Health ; 228: 113555, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32460229

RESUMO

BACKGROUND: The 2019 novel coronavirus (COVID-19) outbreak in Wuhan, China has attracted world-wide attention. As of March 31, 2020, a total of 82,631 cases of COVID-19 in China were confirmed by the National Health Commission (NHC) of China. METHODS: Three approaches, namely Poisson likelihood-based method (ML), exponential growth rate-based method (EGR) and stochastic Susceptible-Infected-Removed dynamic model-based method (SIR), were implemented to estimate the basic and controlled reproduction numbers. RESULTS: A total of 198 chains of transmission together with dates of symptoms onset and 139 dates of infections were identified among 14,829 confirmed cases outside Hubei Province as reported as of March 31, 2020. Based on this information, we found that the serial interval had an average of 4.60 days with a standard deviation of 5.55 days, the incubation period had an average of 8.00 days with a standard deviation of 4.75 days and the infectious period had an average of 13.96 days with a standard deviation of 5.20 days. The estimated controlled reproduction numbers, Rc, produced by all three methods in all analyzed regions of China are significantly smaller compared with the basic reproduction numbers R0. CONCLUSIONS: The controlled reproduction number in China is much lower than one in all regions of China by now. It fell below one within 30 days from the implementations of unprecedent containment measures, which indicates that the strong measures taken by China government was effective to contain the epidemic. Nonetheless, efforts are still needed in order to end the current epidemic as imported cases from overseas pose a high risk of a second outbreak.


Assuntos
Número Básico de Reprodução/estatística & dados numéricos , Betacoronavirus , Infecções por Coronavirus/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Modelos Estatísticos , Pneumonia Viral/epidemiologia , COVID-19 , China/epidemiologia , Infecções por Coronavirus/virologia , Humanos , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2
17.
Artigo em Inglês | MEDLINE | ID: mdl-32235575

RESUMO

The recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, previously known as 2019-nCoV) outbreak has engulfed an unprepared world amidst a festive season. The zoonotic SARS-CoV-2, believed to have originated from infected bats, is the seventh member of enveloped RNA coronavirus. Specifically, the overall genome sequence of the SARS-CoV-2 is 96.2% identical to that of bat coronavirus termed BatCoV RaTG13. Although the current mortality rate of 2% is significantly lower than that of SARS (9.6%) and Middle East respiratory syndrome (MERS) (35%), SARS-CoV-2 is highly contagious and transmissible from human to human with an incubation period of up to 24 days. Some statistical studies have shown that, on average, one infected patient may lead to a subsequent 5.7 confirmed cases. Since the first reported case of coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 on December 1, 2019, in Wuhan, China, there has been a total of 60,412 confirmed cases with 1370 fatalities reported in 25 different countries as of February 13, 2020. The outbreak has led to severe impacts on social health and the economy at various levels. This paper is a review of the significant, continuous global effort that was made to respond to the outbreak in the first 75 days. Although no vaccines have been discovered yet, a series of containment measures have been implemented by various governments, especially in China, in the effort to prevent further outbreak, whilst various medical treatment approaches have been used to successfully treat infected patients. On the basis of current studies, it would appear that the combined antiviral treatment has shown the highest success rate. This review aims to critically summarize the most recent advances in understanding the coronavirus, as well as the strategies in prevention and treatment.


Assuntos
Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/terapia , Coronavirus , Surtos de Doenças/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Pneumonia Viral/terapia , Betacoronavirus , COVID-19 , China/epidemiologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Humanos , Controle de Infecções/métodos , Mortalidade , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , SARS-CoV-2 , Síndrome Respiratória Aguda Grave , Fatores de Tempo , Tratamento Farmacológico da COVID-19
18.
Environ Sci Technol ; 50(2): 1056-64, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26690488

RESUMO

CoMoS/γ-Al2O3 sorbent was prepared via incipient wetness impregnation (IWI) and sulfur-chemical vapor reaction (S-CVR) methods and tested in terms of its potential for Hg(0) capture. It was observed that the CoMoO/γ-Al2O3 showed a Hg(0) capture efficiency around 75% at a temperature between 175 and 325 °C while CoMoS/γ-Al2O3 achieved almost 100% Hg(0) removal efficiency at 50 °C. The high removal efficiency for CoMoS/γ-Al2O3 remained unchanged for 2000 min in the test. Its theoretical capacity for Hg(0) capture was found to be 18.95 mg/g based on the Elovich model. The ability of this material for Hg(0) capture is atributed to the MoS2 nanosheets coated on surface of the maro- and meso-pores of γ-Al2O3. These MoS2 are two-dimensional transition-metal dichalcogenide (2D TMDC) assembled with unsulfided cobalt atoms at the edges. It is believed that these MoS2 nanosheets provided dense active sites for Hg(0) capture. The removal of Hg(0) at low temperatures was achieved via the combination of Hg(0) with the chalcogen (S) atoms on the entire basal plane of the MoS2 nanosheets with coordinative unsaturated sites (CUS) to form a stable compound, HgS.


Assuntos
Poluentes Atmosféricos/isolamento & purificação , Mercúrio/isolamento & purificação , Nanoestruturas/química , Poluentes Atmosféricos/química , Cobalto/química , Temperatura Baixa , Dissulfetos/química , Gases/química , Mercúrio/química , Molibdênio/química , Enxofre/química , Temperatura
19.
Bioresour Technol ; 172: 312-320, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25277259

RESUMO

Five different biomass samples were selected for this study, including miscanthus, distillers dried grain (DDG), wheat shorts, wheat straw and UK wood. These samples were thermochemically treated to alter the lignin, cellulose and hemicellulose composition. Thermogravimetric tests were carried out on these samples to determine thermal behaviours of biomass and its individual lignocellulosic components. The relationship between thermal behaviour of biomass and its corresponding lignocellulosic composition was revealed. The reliability of this relationship was proved by thermogravimetric analysis of samples of artificial biomass prepared by mixing commercially obtained lignin, cellulose and hemicellulose at various blending ratios. It is shown that actual biomass profiles can be predicted with some degree of accuracy based on the lignocellulosic composition.


Assuntos
Temperatura Alta , Lignina/análise , Lignina/química , Modelos Químicos , Extratos Vegetais/química , Termogravimetria/métodos , Biomassa , Simulação por Computador , Extratos Vegetais/análise , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Termodinâmica
20.
Bioresour Technol ; 102(8): 5237-43, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21334876

RESUMO

In this work, 10 different biomasses were selected which included directly grown energy crops, industrial waste material and different wood types. Each biomass was sieved into six different size fractions and pyrolysed in a fixed bed furnace preheated to 1000 °C to produce a char residue. Intrinsic reactivity during burnout was measured using a non-isothermal thermogravimetric method. Scanning electron microscopy and oil immersion microscopy were used to characterise the morphology of the products. Char morphology was summarised in terms of degree of deformation, internal particle structure and wall thickness. Intrinsic reactivity corresponded directly with these morphology groupings showing a significant correlation between char morphotypes, char reactivity and the initial biomass material.


Assuntos
Biomassa , Madeira , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA