Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 243: 117777, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38036208

RESUMO

Oil spills and micropollutants have become thorny environmental issues, posing serious threat to ecosystem and human health. To settle such dilemma, this study successfully constructed a robust and environmentally-friendly MOFs-COFs hybrid-based membrane (FS-50/COF(MATPA)-MOF(Zr)/PDA@PVDF) for the first time through solution synthesis and solvothermal method, combined with surface modification of FS-50 molecule. Importantly, we employed a simple two-step strategy to obtain the high-aspect-ratio MOFs fibers: (1) solvent regulation to generate smaller needle-like whiskers during the in-situ growth of MOFs on COFs; (2) high pressure induced directional crystallization in filtration process. The introduction of polydopamine (PDA) greatly improved the adhesion between coating and PVDF membrane. The in-situ growth of high length-diameter ratio MOFs fibers on blocky COFs greatly enhanced the specific surface area of MOFs-COFs hybrid, thus provided sufficient absorption sites. The functional groups of FS-50 endowed the hybrid membrane with superhydrophilicity and superoleophobicity, which facilitated to selectively penetrate water molecules and repel non-polar pollutants. The separation efficiency and decontamination mechanism of hybrid membrane to the simulated oily wastewater (containing various MPs, dyes, and pesticides) were investigated through experiments and theoretical calculations. The hybrid membrane could selectively and synchronously adsorb various dyes (20 mg/L-120 mg/L, almost 100% removal) and pesticides (10 mg/L for DIF and TET, adsorption rates 93.2% and 90.9%, respectively) from oil-water emulsion (50 mL). The large-scale coated sponge (6 cm × 4.5 cm × 3 cm) could quickly achieve separation of oil-water mixture (almost 100%) with a water permeability of more than 162 L m-2·h-1·bar-1, and simultaneously remove various MPs (PP-2000, PP-100, PE-2000, PS-100, 0.2 g/300 mL for each), Sudan Ⅲ (C0 = 200 mg/L), and DIF (C0 = 10 mg/L) from a simulant oily wastewater (300 mL), with the removal rates of almost 100% for MPs, 99.7% for Sudan Ⅲ, and 95.8% for DIF. Furthermore, we elucidated the removal mechanism of pesticide and dyes through simulating the theoretical adsorption energy and potential adsorption sites. The hybrid membrane not only provides a promising candidate for the removal of multiple pollutants from oil-water emulsion, but also opens a new strategy for achieving efficient and clean aquatic environment restoration.


Assuntos
Compostos Azo , Síndrome de Cockayne , Poluentes Ambientais , Polímeros de Fluorcarboneto , Praguicidas , Polivinil , Humanos , Emulsões , Microplásticos , Ecossistema , Plásticos , Águas Residuárias , Corantes , Água
2.
Water Res ; 243: 120314, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37441898

RESUMO

Microplastics (MPs) and pesticides are becoming an intractable environmental issue due to their wide spreading and non-degradable nature, posing serious threat to ecosystem and human health. To settle such dilemma, this work reasonably designed a superhydrophobic MOF-based coated sponge (ODSOSS/TiO2/Ni-MOF/PDA@Sponge) through the combination of an environmentally friendly in-situ supersaturated coprecipitation and polysesiloxane modification method. Among them, (I) the introduction of polydopamine (PDA) not only improves the adhesion between coatings and sponge, but also enhances the growth of MOF structure through complexation. (II) The obtained Ni-MOF shows large-area microscale anthemy structure with multilayered flaky texture, forming heterogeneously hierarchical structure with the deposited TiO2 nanoparticles, which promotes photodegradation ability of TiO2 owing to great specific surface area of Ni-MOF. (III) The high specific large area Ni-MOF supplies sufficient action sites for linkage of PDA and polysesiloxane molecules with unique nanocage-like structure, thus further greatly increasing adsorption force for various pollutants. (IV) The superhydrophobicity protect the porous channels of MOF from contamination of various absorbed pollutants, while TiO2 nanoparticles effectively photodegrade the absorbed organic pollutants, endowing the sponge superior recyclability. The superhydrophobic sponge selectively rapidly and synchronously adsorbs various MPs (maintained almost 100% after 60 cycles) and pesticides (adsorption rates 71.6%-95.1%) from high-salinity water. The large-area sponge (9 cm × 6 cm × 1 cm) simultaneously removes almost 100% MPs (40 mg/L), Sudan Ⅲ (10 mg/L), kerosene (30 mL/L), and four pesticides (10 mg/L) within 1 min. Particularly, four pesticides are quickly photocatalytic degraded by the coated sponge. The free radical capture trials show that hydroxyl radicals (·OH) are the main active species of pesticide degradation. Furthermore, we reveal the negative centers where pesticide molecules are most vulnerable to ·OH attack, on basis of the charge distribution and molecular electrostatic potential (MEP) analysis. The adsorption mechanisms are carefully clarified through theoretical calculation and experimental data. This work not only provide an effective superhydrophobic candidate for MPs and pesticides removal in a broad applicable scope (especially in high-salinity wastewater), but also opens a new strategy for environmental remediation.


Assuntos
Poluentes Ambientais , Praguicidas , Humanos , Microplásticos , Praguicidas/química , Plásticos , Ecossistema , Salinidade , Água/química , Interações Hidrofóbicas e Hidrofílicas
3.
Chemosphere ; 310: 136863, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36244419

RESUMO

The non-point source pollution of difenoconazole (DIF) has become a serious environmental issue, increasingly causes indelible damages to eco-environment and human health due to its toxicity, persistence, and biomagnification. An eco-friendly, cost-effective, and efficient control technology is imperative towards a cleaner and sustainable agricultural production. Herein, a dominant microflora of efficiently degrading DIF was successfully screened, and its microbial diversity was investigated. Two novel degrading strains were isolated and identified as Phyllobacterium sp. (T-1) and Aeromonas sp. (T-2). The results of growth factor optimization indicated that the degradation rates of DIF (C0 = 20 mg/L) by strain T-1 and T-2 were up to 96.32% and 97.86% within 14 d, respectively, under the optimal conditions. Moreover, there no obvious synergy between strain T-1 and strain T-2. From catalytic kinetics of enzymes, the intracellular enzyme of strain T-1 dominated the degradation of DIF (C0 = 20 mg/L) entirely with the degradation rate of 82.4% (48 h), the extracellular enzyme showed little catalytic activity. However, the degrade rates of DIF (C0 = 20 mg/L) by both intracellular and extracellular enzymes of strain T-2 were 77.99% and 26.73% within 48 h, respectively. Moreover, these enzymes remained an undiminished catalytic activity within 48 h. DIF was degraded by strain T-1 to three main transformation products (DIF-TPs 406, DIF-TPs 216, and DIF-TPs 198) undergoing hydroxyl substitution, hydrolysis, cleavage of ether bond between benzene rings, and rearrangement, while two additional products (DIF-TPs 281 and DIF-TPs 237) were generated with the biodegradation of strain T-2, excepting for DIF-TPs 406 and DIF-TPs 216, involving hydrolysis, hydroxylation, and ether bond cleavage between benzene rings. Moreover, QSAR simulation showed that the by-products were almost much lower toxicity or even non-toxic to three typical aquatic organisms (fish, daphnia, and green algae) than DIF. This study not only provides an in depth understanding of DIF bioelimination, but also be instrumental in cleaner management of DIF-contaminated soil. This study can promote the sustainable development of agriculture.


Assuntos
Benzeno , Microbiota , Biodegradação Ambiental , Éteres
4.
Bull Environ Contam Toxicol ; 104(5): 689-700, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32303813

RESUMO

In this study, the hydrolysis of amisulbrom in buffer solutions and natural water samples were investigated. Effects of pH and temperature were tested in buffer solutions. Amisulbrom was stable in acidic and neutral aqueous solutions at 25°C, while quickly hydrolyzed with a half-life of 4.5 days (25°C) at pH 9.0. The kinetics rate equation was determined as k = 1.0234 × 1010 exp (-61.3760/R·T) (R2 = 0.9642) for hydrolysis of amisulbrom at pH 9.0. The pH, ionic strength, and solubility were important factors influencing the hydrolysis of amisulbrom in natural water samples. Furthermore, three hydrolysis products were separated and identified in buffer solution (pH 9.0) and natural water samples. A tentative transformation mechanism of amisulbrom was proposed to rationalize the formation of HPs (hydrolysis products) based on their structural identification, DFT (density functional theory), and hydrolysis profiles. Toxicity prediction using the quantitative structure-activity relationship model revealed that the HP-I, and HP-II were more toxic than the parent amisulbrom. This investigation was the first to evaluate the behavior of amisulbrom hydrolysis in aquatic systems.


Assuntos
Água Doce/química , Indóis/química , Modelos Químicos , Praguicidas/química , Triazóis/química , Poluentes Químicos da Água/química , Soluções Tampão , Água Doce/análise , Concentração de Íons de Hidrogênio , Hidrólise , Indóis/análise , Cinética , Modelos Moleculares , Estrutura Molecular , Concentração Osmolar , Praguicidas/análise , Solubilidade , Soluções , Temperatura , Triazóis/análise , Poluentes Químicos da Água/análise
5.
Artigo em Inglês | MEDLINE | ID: mdl-32191999

RESUMO

A commercial formulation, 37% dispersible oil suspension (DOS) (fomesafen, clomazone, and clethodim), is being registered in China to control annual or perennial weeds in soybean fields. In this paper, a liquid chromatography tandem mass spectrometry method with QuEChERS (quick, easy, cheap, effective, rugged, and safe) sample preparation was developed for the simultaneous determination of fomesafen, clomazone, clethodim, and its two metabolites (CSO and CSO2) in soybean, green soybean, and soybean straw samples. The mean recoveries of our developed method for the five analytes in three matrices were ranged from 71% to 116% with relative standard deviations (RSDs) less than 12.6%. The limits of quantification (LOQs) were 0.01 mg/kg in soybean, 0.01 mg/kg in green soybean, and 0.02 mg/kg in soybean straw while the limits of detection (LODs) ranged from 0.018 to 0.125 µg/kg for these five analytes. The highest final residual amount of CSO2 in green soybean samples (0.015 mg/kg) appeared in Anhui, and the highest in soybean straw samples was 0.029 mg/kg in Guangxi, whilst the terminal residues of fomesafen, clomazone, clethodim and CSO were lower than LOQs (0.01 mg/kg) in all samples. Furthermore, these terminal residues were all lower than the maximum residue limits (MRLs) set by China (0.1 mg/kg for fomesafen and clethodim, 0.05 mg/kg for clomazone) at harvest. Additional chronic dietary risk was evaluated using a risk quotients (RQs) method based on Chinese dietary habits. The chronic dietary exposure risk quotients were 4.3 for fomesafen, 0.12 for clomazone, and 19.3 for clethodim, respectively, which were significantly lower than 100. These results demonstrated that the dietary exposure risk of fomesafen, clomazone, and clethodim used in soybean according to good agricultural practices (GAP) was acceptable and would not pose an unacceptable health risk to Chinese consumers. These results not only offer insight with respect to the analytes, but also contribute to environmental protection and food safety.


Assuntos
Benzamidas , Cicloexanonas , Exposição Dietética , Isoxazóis , Oxazolidinonas , Resíduos de Praguicidas , Benzamidas/toxicidade , China , Cicloexanonas/toxicidade , Ecossistema , Humanos , Isoxazóis/toxicidade , Oxazolidinonas/toxicidade , Resíduos de Praguicidas/toxicidade , Medição de Risco , Glycine max/química , Espectrometria de Massas em Tandem
6.
Chemosphere ; 214: 543-552, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30286421

RESUMO

The photodegradation of fluazaindolizine in water was investigated under simulated sunlight irradiation. The effects of solution pH, humic acids (HA), nitrates (NO3-) and Fe(III) ions on photolysis of fluazaindolizine were studied. The results indicated that pH did not significantly affect its photodegradation. At low concentration (up to 5 mg/L), HA slightly facilitated the photodegradation of fluazaindolizine, while at high concentration (10-20 mg/L), HA inhibited its photodegradation. The presence of NO3- (0-10 mg/L) and Fe(III) (0-5 mg/L) noticeably accelerated the photodegradation of fluazaindolizine. Moreover, eleven direct transformation products (TPs) were isolated and identified by liquid chromatography quadrupole time-of-flight mass spectrometry. Density functional theory (DFT) calculation was utilized to characterize molecular property of fluazaindolizine and predict the potentiality of the possible photodegradation reaction. Ultimately, a possible transformation mechanism was proposed based on the identified TPs, degradation profiles and DFT calculation. The predominant photoproduct came from ring opening of imidazole-ring and dechlorination. Other TPs resulted from a series of photochemical reactions involving hydroxyl substitution, ring-opening, cleavage, oxidation and decarboxylation. These results were important in elucidating environmental fate of fluazaindolizine in aquatic system and further environmental risk assessment.


Assuntos
Compostos Férricos/química , Compostos Heterocíclicos com 2 Anéis/metabolismo , Substâncias Húmicas/análise , Nitratos/química , Sulfonamidas/metabolismo , Luz Solar , Poluentes Químicos da Água/metabolismo , Água/química , Compostos Heterocíclicos com 2 Anéis/análise , Compostos Heterocíclicos com 2 Anéis/efeitos da radiação , Cinética , Fotólise , Sulfonamidas/análise , Sulfonamidas/efeitos da radiação , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/efeitos da radiação
7.
Food Chem Toxicol ; 120: 64-70, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29958988

RESUMO

Tebufenozide, a newly-developed nonsteroidal ecdysone agonist, is in pre-regulation phase (before approval for use) on stem lettuce in China. Aiming at the safe application of tebufenozide, the dissipation and terminal residue trials on stem lettuce were performed under good agricultural practice (GAP). The dissipation trials shown that tebufenozide was rapidly degraded in stem lettuce, with half-lives of 5.0-8.2 days. Pre-regulation dietary exposure risk assessments were evaluated to recommend maximum residue limits (MRLs) based on risk quotients (RQ) method. Relevant toxicological parameters including ADI (acceptable daily intake) and ARfD (acute reference dose) were applied to assess the potential dietary exposure risk. The results indicated the chronic dietary exposure risk probability (RQc) of tebufenozide ranged from 36.4% to 70.0%. The acute dietary exposure risk probability (RQa) of tebufenozide was 2.88%-8.49% in lettuce stems and 14.0%-20.0% in lettuce leaves, respectively. On the basis of supervised field trial data and dietary exposure risk assessment results, the MRLs of tebufenozide were recommended as 3 mg/kg for lettuce stems and 10 mg/kg for lettuce leaves, respectively. The results demonstrated that the dietary exposure risk of tebufenozide used in stem lettuce under GAP was negligible and would not pose unacceptable health risk to Chinese consumers.


Assuntos
Exposição Dietética , Contaminação de Alimentos/análise , Hidrazinas/análise , Inseticidas/análise , Lactuca/química , Resíduos de Praguicidas/análise , China , Cromatografia Líquida , Ecossistema , Humanos , Hidrazinas/toxicidade , Inseticidas/toxicidade , Resíduos de Praguicidas/toxicidade , Folhas de Planta/química , Caules de Planta/química , Padrões de Referência , Reprodutibilidade dos Testes , Medição de Risco , Espectrometria de Massas em Tandem
8.
J Hazard Mater ; 342: 698-704, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28917198

RESUMO

Fluazaindolizine suspension concentrate (500gL-1 SC), as a pre-commercialized product, was firstly investigated under open-field conditions. A sensitive method for simultaneous determination of fluazaindolizine and seven metabolites (IN-QEK31, IN-F4106, IN-A5760, IN-UJV12, IN-UNS90, IN-QZY47 and IN-TMQ01) was established and validated using HPLC-QqQ-MS/MS technique. The LOQs of these pollutants in tomato were 0.01mgkg-1, and their recoveries were 81.1%-117% with the relative standard deviations (RSDs <11.8%). The dissipation behaviours of fluazaindolizine in soil followed first-order kinetics with the half lives of 4.6-32.4days, whilst the residues in plant were below its LOQ after 7days. The fluazaindolizine residues in soil were below 0.963mgkg-1, based on root irrigation applications (50-75mg a.i. per plant) twice and pre-harvest interval (PHI, 3days), while the residues of IN-QEK31, IN-F4106 and IN-A5760 were below 3.9mgkg-1, excluding other four metabolites (<0.01mgkg-1). The residues of fluazaindolizine in tomato were below 0.01mgkg-1, and IN-QEK31 remained 0.135mgkg-1. The current study could not only guide reasonable usage of the formulation, but also facilitate the setting of residue definition and its maximum residue limits (MRLs) of fluazaindolizine in tomato.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Compostos Heterocíclicos com 2 Anéis/química , Solo/química , Solanum lycopersicum/metabolismo , Sulfonamidas/química , Ecossistema , Meia-Vida , Solanum lycopersicum/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA