Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 916: 170204, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262535

RESUMO

Pharmaceutical residues are increasingly becoming a significant source of environmental water pollution and ecological risk. This study, leveraging official national pharmaceutical sales statistics, predicts the environmental concentrations of 33 typical pharmaceuticals in the Tianjin area. The results show that 52 % of the drugs have a PEC/MEC (Predicted Environmental Concentration/Measured Environmental Concentration) ratio within the acceptable range of 0.5-2, including atenolol (1.21), carbamazepine (1.22), and sulfamethoxazole (0.91). Among the selected drugs, tetracycline, ciprofloxacin, and acetaminophen had the highest predicted concentrations. The EPI (Estimation Programs Interface) biodegradation model, a tool from the US Environmental Protection Agency, is used to predict the removal efficiency of compounds in wastewater treatment plants. The results indicate that the EPI predictions are acceptable for macrolide antibiotics and ß-blockers, with removal rates of roxithromycin, spiramycin, acetaminophen, and carbamazepine being 14.1 %, 61.2 %, 75.1 %, and 44.5 %, respectively. However, the model proved to be less effective for fluoroquinolone antibiotics. The ECOSAR (Ecological Structure-Activity Relationships) model was used to supplement the assessment of the potential impacts of drugs on aquatic ecosystems, further refining the analysis of pharmaceutical environmental risks. By combining the concentration and detection frequency of pharmaceutical wastewater, this study identified 9 drugs with significant toxicological risks and marked another 24 drugs as substances of potential concern. Additionally, this study provides data support for addressing pharmaceutical residues of priority concern in subsequent research.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Eliminação de Resíduos Líquidos , Vigilância Epidemiológica Baseada em Águas Residuárias , Poluentes Químicos da Água/análise , Ecossistema , Acetaminofen , Monitoramento Ambiental/métodos , Antibacterianos/análise , Carbamazepina/análise , Preparações Farmacêuticas
2.
Biology (Basel) ; 12(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37237556

RESUMO

As an important driving force, introgression plays an essential role in shaping the evolution of plant species. However, knowledge concerning how introgression affects plant evolution in agroecosystems with strong human influences is still limited. To generate such knowledge, we used InDel (insertion/deletion) molecular fingerprints to determine the level of introgression from japonica rice cultivars into the indica type of weedy rice. We also analyzed the impact of crop-to-weed introgression on the genetic differentiation and diversity of weedy rice, using InDel (insertion/deletion) and SSR (simple sequence repeat) molecular fingerprints. Results based on the STRUCTURE analysis indicated an evident admixture of some weedy rice samples with indica and japonica components, suggesting different levels of introgression from japonica rice cultivars to the indica type of weedy rice. The principal coordinate analyses indicated indica-japonica genetic differentiation among weedy rice samples, which was positively correlated with the introgression of japonica-specific alleles from the rice cultivars. In addition, increased crop-to-weed introgression formed a parabola pattern of dynamic genetic diversity in weedy rice. Our findings based on this case study provide evidence that human activities, such as the frequent change in crop varieties, can strongly influence weed evolution by altering genetic differentiation and genetic diversity through crop-weed introgression in agroecosystems.

3.
Biology (Basel) ; 10(9)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34571705

RESUMO

Agricultural weeds pose great challenges to sustainable crop production, owing to their complex origins and abundant genetic diversity. Weedy rice (WD) infests rice fields worldwide causing tremendous losses of rice yield/quality. To explore WD origins and evolution, we analyzed DNA sequence polymorphisms of the seed shattering genes (sh4 and qsh1) in weedy, wild, and cultivated rice from a worldwide distribution. We also used microsatellite and insertion/deletion molecular fingerprinting to determine their genetic relationship and structure. Results indicate multiple origins of WD with most samples having evolved from their cultivated progenitors and a few samples from wild rice. WD that evolved from de-domestication showed distinct genetic structures associated with indica and japonica rice differentiation. In addition, the weed-unique haplotypes that were only identified in the WD samples suggest their novel mutations. Findings in this study demonstrate the key role of de-domestication in WD origins, in which indica and japonica cultivars stimulated further evolution and divergence of WD in various agroecosystems. Furthermore, novel mutations promote continued evolution and genetic diversity of WD adapting to different environments. Knowledge generated from this study provides deep insights into the origin and evolution of conspecific weeds, in addition to the design of effective measures to control these weeds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA