Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 4(1): 101961, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36633948

RESUMO

Tertiary lymphoid structures (TLSs) are ectopic lymphoid aggregates that can develop within or adjacent to tumors, but protocols that can accurately identify and characterize TLSs are lacking. Here, we present a protocol for the in situ interrogation and characterization of TLSs in human and murine tissue sections using Opal™-tyramide signal amplification multiplex immunohistochemistry. This protocol enables simultaneous detection of up to 7 markers (6 antigens and a DAPI counterstain). We also describe a grading system to identify immature and mature TLSs.


Assuntos
Neoplasias , Estruturas Linfoides Terciárias , Humanos , Camundongos , Animais , Estruturas Linfoides Terciárias/patologia , Imuno-Histoquímica , Neoplasias/patologia
2.
Methods Mol Biol ; 2593: 307-316, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36513940

RESUMO

Multiplex immunohistochemistry (mIHC) facilitates the simultaneous detection of various immune cell markers on a single tissue section. Here, we describe a protocol for an mIHC staining workflow using specific antibodies against CD4, CD8α, FOXP3, and B220 to identify distinct lymphocyte populations including T and B cells. This staining strategy can be adapted to include other cell markers to evaluate the immune contexture in murine tissues.


Assuntos
Anticorpos , Camundongos , Animais , Imuno-Histoquímica , Coloração e Rotulagem , Biomarcadores
3.
Cell Death Dis ; 13(9): 777, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36075907

RESUMO

Understanding prostate cancer onset and progression in order to rationally treat this disease has been critically limited by a dire lack of relevant pre-clinical animal models. We have generated a set of genetically engineered mice that mimic human prostate cancer, initiated from the gland epithelia. We chose driver gene mutations that are specifically relevant to cancers of young men, where aggressive disease poses accentuated survival risks. An outstanding advantage of our models are their intact repertoires of immune cells. These mice provide invaluable insight into the importance of immune responses in prostate cancer and offer scope for studying treatments, including immunotherapies. Our prostate cancer models strongly support the role of tumour suppressor p53 in functioning to critically restrain the emergence of cancer pathways that drive cell cycle progression; alter metabolism and vasculature to fuel tumour growth; and mediate epithelial to mesenchymal-transition, as vital to invasion. Importantly, we also discovered that the type of p53 alteration dictates the specific immune cell profiles most significantly disrupted, in a temporal manner, with ramifications for disease progression. These new orthotopic mouse models demonstrate that each of the isogenic hotspot p53 amino acid mutations studied (R172H and R245W, the mouse equivalents of human R175H and R248W respectively), drive unique cellular changes affecting pathways of proliferation and immunity. Our findings support the hypothesis that individual p53 mutations confer their own particular oncogenic gain of function in prostate cancer.


Assuntos
Neoplasias da Próstata , Proteína Supressora de Tumor p53 , Animais , Carcinogênese/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
Cytokine ; 155: 155887, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35512531

RESUMO

Interleukin-36 gamma (IL-36G) is a member of the IL-36 subfamily of cytokines and acts as a potent driver of inflammation. IL-36G has been extensively characterized in the pathogenesis of psoriasis and has been recently described to play roles in wound healing particularly in the gastrointestinal tract. However, the effects of IL-36G during cancer development including gastric cancer remain unexplored. Here, we show that IL-36G induced ERK1/2 activation in AGS, MKN1 and MKN45 human gastric cancer cell lines. Moreover, IL-36G induced colony formation, migration and invasion of these gastric cancer cell lines that was inhibited by the natural antagonist, IL-36 receptor antagonist (RA). Interrogation of TCGA stomach adenocarcinoma patient datasets revealed highly elevated IL-36G gene expression in human gastric cancer compared to normal tissue independent of tumor stage, and high IL-36G expression corresponded with poorer patient survival. Collectively, our results indicate for the first time that IL-36G supports a neoplastic phenotype in human gastric cancer cells.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Adenocarcinoma/genética , Adenocarcinoma/patologia , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Transdução de Sinais , Neoplasias Gástricas/patologia
5.
Front Immunol ; 12: 767939, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858425

RESUMO

The tumor microenvironment (TME) is composed of a heterogenous population of cells that exist alongside the extracellular matrix and soluble components. These components can shape an environment that is conducive to tumor growth and metastatic spread. It is well-established that stromal cancer-associated fibroblasts (CAFs) in the TME play a pivotal role in creating and maintaining a growth-permissive environment for tumor cells. A growing body of work has uncovered that tumor cells recruit and educate CAFs to remodel the TME, however, the mechanisms by which this occurs remain incompletely understood. Recent studies suggest that the signal transducer and activator of transcription 3 (STAT3) is a key transcription factor that regulates the function of CAFs, and their crosstalk with tumor and immune cells within the TME. CAF-intrinsic STAT3 activity within the TME correlates with tumor progression, immune suppression and eventually the establishment of metastases. In this review, we will focus on the roles of STAT3 in regulating CAF function and their crosstalk with other cells constituting the TME and discuss the utility of targeting STAT3 within the TME for therapeutic benefit.


Assuntos
Fibroblastos Associados a Câncer/imunologia , Neoplasias/imunologia , Fator de Transcrição STAT3/imunologia , Transdução de Sinais/imunologia , Microambiente Tumoral/imunologia , Fibroblastos Associados a Câncer/metabolismo , Comunicação Celular/imunologia , Progressão da Doença , Humanos , Janus Quinases/imunologia , Janus Quinases/metabolismo , Neoplasias/metabolismo , Neoplasias/terapia , Fosforilação/imunologia , Fator de Transcrição STAT3/metabolismo
6.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34681666

RESUMO

Multiplex immunohistochemistry (mIHC) enables simultaneous staining of multiple immune markers on a single tissue section. Mounting studies have demonstrated the versatility of mIHC in evaluating immune infiltrates in different diseases and the tumour microenvironment (TME). However, the majority of published studies are limited to the analysis of human patient samples. Performing mIHC on formalin-fixed paraffin-embedded (FFPE) mouse tissues, particularly with sensitive antigens, remain challenging. The aim of our study was to develop a robust and reproducible protocol to uncover the immune landscape in mouse FFPE tissues. Effective antibody stripping while maintaining sensitivity to antigens and tissue adhesion to the glass slide is critical in developing an mIHC panel to allow successive rounds of staining. Thus, we identified a highly efficient stripping method that preserves signal intensity and antigenicity to allow multiple rounds of staining. We subsequently optimised an mIHC workflow with antibodies specific against CD4, CD8α, FOXP3 and B220 to identify distinct T and B cell populations on mouse FFPE tissues. Lastly, the application of this mIHC panel was validated in a mouse model of inflammatory bowel cancer, two allograft mouse models of spontaneous colon adenocarcinoma and a sporadic mouse model of colon cancer. Together, these demonstrate the utility of the aforementioned protocol in establishing the quantity and spatial localisation of immune cells in different pathological tissues.


Assuntos
Colite/patologia , Neoplasias do Colo/patologia , Imuno-Histoquímica/métodos , Animais , Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Neoplasias do Colo/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Baço/patologia , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
7.
Diabetes ; 70(9): 2026-2041, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34183374

RESUMO

Most obese and insulin-resistant individuals do not develop diabetes. This is the result of the capacity of ß-cells to adapt and produce enough insulin to cover the needs of the organism. The underlying mechanism of ß-cell adaptation in obesity, however, remains unclear. Previous studies have suggested a role for STAT3 in mediating ß-cell development and human glucose homeostasis, but little is known about STAT3 in ß-cells in obesity. We observed enhanced cytoplasmic expression of STAT3 in severely obese subjects with diabetes. To address the functional role of STAT3 in adult ß-cells, we generated mice with tamoxifen-inducible partial or full deletion of STAT3 in ß-cells and fed them a high-fat diet before analysis. Interestingly, ß-cell heterozygous and homozygous STAT3-deficient mice showed glucose intolerance when fed a high-fat diet. Gene expression analysis with RNA sequencing showed that reduced expression of mitochondrial genes in STAT3 knocked down human EndoC-ß1H cells, confirmed in FACS-purified ß-cells from obese STAT3-deficient mice. Moreover, silencing of STAT3 impaired mitochondria activity in EndoC-ß1H cells and human islets, suggesting a mechanism for STAT3-modulated ß-cell function. Our study postulates STAT3 as a novel regulator of ß-cell function in obesity.


Assuntos
Intolerância à Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Mitocôndrias/metabolismo , Obesidade/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Glicemia/metabolismo , Dieta Hiperlipídica , Genes Mitocondriais , Intolerância à Glucose/genética , Humanos , Insulina/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Obesidade/genética , Fator de Transcrição STAT3/genética
8.
Cancer Immunol Res ; 9(7): 735-747, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33906864

RESUMO

IL11 is a member of the IL6 family of cytokines and signals through its cognate receptor subunits, IL11RA and glycoprotein 130 (GP130), to elicit biological responses via the JAK/STAT signaling pathway. IL11 contributes to cancer progression by promoting the survival and proliferation of cancer cells, but the potential immunomodulatory properties of IL11 signaling during tumor development have thus far remained unexplored. Here, we have characterized a role for IL11 in regulating CD4+ T cell-mediated antitumor responses. Absence of IL11 signaling impaired tumor growth in a sporadic mouse model of colon cancer and syngeneic allograft models of colon cancer. Adoptive bone marrow transfer experiments and in vivo depletion studies demonstrated that the tumor-promoting activity of IL11 was mediated through its suppressive effect on host CD4+ T cells in the tumor microenvironment. Indeed, when compared with Il11ra-proficient CD4+ T cells associated with MC38 tumors, their Il11ra-deficient counterparts displayed elevated expression of mRNA encoding the antitumor mediators IFNγ and TNFα. Likewise, IL11 potently suppressed the production of proinflammatory cytokines (IFNγ, TNFα, IL6, and IL12p70) by CD4+ T cells in vitro, which we corroborated by RNAscope analysis of human colorectal cancers, where IL11RAhigh tumors showed less IFNG and CD4 expression than IL11RAlow tumors. Therefore, our results ascribe a tumor cell-extrinsic immunomodulatory role to IL11 during colon cancer development that could be amenable to an anticytokine-based therapy.See related Spotlight by van der Burg, p. 724.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Neoplasias do Colo/imunologia , Subunidade alfa de Receptor de Interleucina-11/metabolismo , Interleucina-11/metabolismo , Animais , Antígenos CD4/análise , Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular Tumoral , Colo/imunologia , Colo/patologia , Neoplasias do Colo/patologia , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Interferon gama/análise , Interferon gama/metabolismo , Subunidade alfa de Receptor de Interleucina-11/análise , Subunidade alfa de Receptor de Interleucina-11/genética , Camundongos , Camundongos Knockout , Neoplasias de Tecido Ósseo , Receptores de Interleucina-11/metabolismo , Microambiente Tumoral/imunologia
9.
Biomedicines ; 9(2)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673239

RESUMO

The intestinal epithelium provides a barrier against commensal and pathogenic microorganisms. Barrier dysfunction promotes chronic inflammation, which can drive the pathogenesis of inflammatory bowel disease (IBD) and colorectal cancer (CRC). Although the Signal Transducer and Activator of Transcription-3 (STAT3) is overexpressed in both intestinal epithelial cells and immune cells in IBD patients, the role of the interleukin (IL)-6 family of cytokines through the shared IL-6ST/gp130 receptor and its associated STAT3 signalling in intestinal barrier integrity is unclear. We therefore investigated the role of STAT3 in retaining epithelial barrier integrity using dextran sulfate sodium (DSS)-induced colitis in two genetically modified mouse models, to either reduce STAT1/3 activation in response to IL-6 family cytokines with a truncated gp130∆STAT allele (GP130∆STAT/+), or by inducing short hairpin-mediated knockdown of Stat3 (shStat3). Here, we show that mice with reduced STAT3 activity are highly susceptible to DSS-induced colitis. Mechanistically, the IL-6/gp130/STAT3 signalling cascade orchestrates intestinal barrier function by modulating cytokine secretion and promoting epithelial integrity to maintain a defence against bacteria. Our study also identifies a crucial role of STAT3 in controlling intestinal permeability through tight junction proteins. Thus, therapeutically targeting the IL-6/gp130/STAT3 signalling axis to promote barrier function may serve as a treatment strategy for IBD patients.

10.
Genome Biol ; 18(1): 166, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874170

RESUMO

BACKGROUND: Adenosine-to-inosine (A-to-I) editing of dsRNA by ADAR proteins is a pervasive epitranscriptome feature. Tens of thousands of A-to-I editing events are defined in the mouse, yet the functional impact of most is unknown. Editing causing protein recoding is the essential function of ADAR2, but an essential role for recoding by ADAR1 has not been demonstrated. ADAR1 has been proposed to have editing-dependent and editing-independent functions. The relative contribution of these in vivo has not been clearly defined. A critical function of ADAR1 is editing of endogenous RNA to prevent activation of the dsRNA sensor MDA5 (Ifih1). Outside of this, how ADAR1 editing contributes to normal development and homeostasis is uncertain. RESULTS: We describe the consequences of ADAR1 editing deficiency on murine homeostasis. Adar1 E861A/E861A Ifih1 -/- mice are strikingly normal, including their lifespan. There is a mild, non-pathogenic innate immune activation signature in the Adar1 E861A/E861A Ifih1 -/- mice. Assessing A-to-I editing across adult tissues demonstrates that outside of the brain, ADAR1 performs the majority of editing and that ADAR2 cannot compensate in its absence. Direct comparison of the Adar1 -/- and Adar1 E861A/E861A alleles demonstrates a high degree of concordance on both Ifih1 +/+ and Ifih1 -/- backgrounds, suggesting no substantial contribution from ADAR1 editing-independent functions. CONCLUSIONS: These analyses demonstrate that the lifetime absence of ADAR1-editing is well tolerated in the absence of MDA5. We conclude that protein recoding arising from ADAR1-mediated editing is not essential for organismal homeostasis. Additionally, the phenotypes associated with loss of ADAR1 are the result of RNA editing and MDA5-dependent functions.


Assuntos
Adenosina Desaminase/metabolismo , Homeostase/genética , Edição de RNA , Adenosina/metabolismo , Adenosina Desaminase/genética , Alelos , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Feminino , Crescimento e Desenvolvimento/genética , Imunidade Inata/genética , Inosina/metabolismo , Helicase IFIH1 Induzida por Interferon/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transcriptoma
11.
Diabetes ; 66(12): 2973-2986, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28928277

RESUMO

The members of the BCL-2 family are crucial regulators of the mitochondrial pathway of apoptosis in normal physiology and disease. Besides their role in cell death, BCL-2 proteins have been implicated in the regulation of mitochondrial oxidative phosphorylation and cellular metabolism. It remains unclear, however, whether these proteins have a physiological role in glucose homeostasis and metabolism in vivo. In this study, we report that fat accumulation in the liver increases c-Jun N-terminal kinase-dependent BCL-2 interacting mediator of cell death (BIM) expression in hepatocytes. To determine the consequences of hepatic BIM deficiency in diet-induced obesity, we generated liver-specific BIM-knockout (BLKO) mice. BLKO mice had lower hepatic lipid content, increased insulin signaling, and improved global glucose metabolism. Consistent with these findings, lipogenic and lipid uptake genes were downregulated and lipid oxidation enhanced in obese BLKO mice. Mechanistically, BIM deficiency improved mitochondrial function and decreased oxidative stress and oxidation of protein tyrosine phosphatases, and ameliorated activation of peroxisome proliferator-activated receptor γ/sterol regulatory element-binding protein 1/CD36 in hepatocytes from high fat-fed mice. Importantly, short-term knockdown of BIM rescued obese mice from insulin resistance, evidenced by reduced fat accumulation and improved insulin sensitivity. Our data indicate that BIM is an important regulator of liver dysfunction in obesity and a novel therapeutic target for restoring hepatocyte function.


Assuntos
Proteína 11 Semelhante a Bcl-2/fisiologia , Fígado Gorduroso/etiologia , Resistência à Insulina , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Fígado/metabolismo , Obesidade/metabolismo , Estresse Oxidativo , Animais , Células Cultivadas , Ativação Enzimática , Ácidos Graxos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo
12.
Chem Commun (Camb) ; 53(68): 9394-9397, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28745731

RESUMO

Aggregation of the highly amyloidogenic IAPP is endogenously inhibited inside beta-cell granules at millimolar concentrations. Combining in vitro experiments and computer simulations, we demonstrated that the stabilization of IAPP upon the formation of zinc-coordinated ion molecular complex with C-peptide might be important for the endogenous inhibition of IAPP aggregation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA