Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 128: 107-116, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36801026

RESUMO

The degradation of metoprolol (MTP) by the UV/sulfite with oxygen as an advanced reduction process (ARP) and that without oxygen as an advanced oxidation process (AOP) was comparatively studied herein. The degradation of MTP by both processes followed the first-order rate law with comparable reaction rate constants of 1.50×10-3sec-1 and 1.20×10-3sec-1, respectively. Scavenging experiments demonstrated that both eaq- and H• played a crucial role in MTP degradation by the UV/sulfite as an ARP, while SO4•- was the dominant oxidant in the UV/sulfite AOP. The degradation kinetics of MTP by the UV/sulfite as an ARP and AOP shared a similar pH dependence with a minimum rate obtained around pH 8. The results could be well explained by the pH impacts on the MTP speciation and sulfite species. Totally six transformation products (TPs) were identified from MTP degradation by the UV/sulfite ARP, and two additional ones were detected in the UV/sulfite AOP. The benzene ring and ether groups of MTP were proposed as the major reactive sites for both processes based on molecular orbital calculations by density functional theory (DFT). The similar degradation products of MTP by the UV/sulfite process as an ARP and AOP indicated that eaq-/H• and SO4•- might share similar reaction mechanisms, primarily including hydroxylation, dealkylation, and H abstraction. The toxicity of MTP solution treated by the UV/sulfite AOP was calculated to be higher than that in the ARP by the Ecological Structure Activity Relationships (ECOSAR) software, due to the accumulation of TPs with higher toxicity.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Metoprolol/química , Oxigênio , Raios Ultravioleta , Poluentes Químicos da Água/química , Oxirredução , Sulfitos/química , Cinética , Purificação da Água/métodos
2.
J Hazard Mater ; 445: 130537, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36493640

RESUMO

Recently, hydroxylamine (HAm) was introduced to drive advanced oxidation processes (AOPs) for removing organic contaminants. However, we found that HAm-driven Cu(II)/peroxymonosulfate oxidation of phenol produced p-nitrosophenol, 2-nitrophenol and 4-nitrophenol. The total nitro(so) products accounted for approximately 25.0 % of the phenol transformation at certain condition. SO4•- and •OH were identified as the primary and second significant oxidants, respectively. Reactive nitrogen species (RNS) were involved in phenol transformation. The pathway and mechanism of HAm transformation in HAm-driven transition metal ion-catalyzed AOPs were proposed for the first time in this study. The product of HAm via twice single-electron oxidation by Cu(II) is nitroxyl (HNO/NO-), which is a critical oxidation intermediate of HAm. Further oxidation of HNO by SO4•- or •OH is the initial step in propagating radical chain reactions, leading to nitric oxide radical (•NO) and nitrogen dioxide radical (•NO2) as the primary RNS. HAm is a critical intermediate in natural nitrogen cycle, suggesting that HAm can drive the oxidation processes of pollutants in natural environments. Nitro(so) products will be readily produced when AOPs are applied for ecological remediation. This study highlights the formation of toxic nitrosated and nitrated products in HAm-driven AOPs, and the requirement of risk assessments to evaluate the possible health and ecological impacts.


Assuntos
Nitratos , Poluentes Químicos da Água , Hidroxilamina , Oxirredução , Óxido Nítrico , Fenol , Hidroxilaminas , Poluentes Químicos da Água/análise
3.
Front Microbiol ; 13: 895409, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572701

RESUMO

Fe-driven biological nitrogen removal (FeBNR) has become one of the main technologies in water pollution remediation due to its economy, safety and mild reaction conditions. This paper systematically summarizes abiotic and biotic reactions in the Fe and N cycles, including nitrate/nitrite-dependent anaerobic Fe(II) oxidation (NDAFO) and anaerobic ammonium oxidation coupled with Fe(III) reduction (Feammox). The biodiversity of iron-oxidizing microorganisms for nitrate/nitrite reduction and iron-reducing microorganisms for ammonium oxidation are reviewed. The effects of environmental factors, e.g., pH, redox potential, Fe species, extracellular electron shuttles and natural organic matter, on the FeBNR reaction rate are analyzed. Current application advances in natural and artificial wastewater treatment are introduced with some typical experimental and application cases. Autotrophic FeBNR can treat low-C/N wastewater and greatly benefit the sustainable development of environmentally friendly biotechnologies for advanced nitrogen control.

4.
Environ Sci Technol ; 56(3): 1492-1509, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35007064

RESUMO

High-valent iron(IV)-oxo complexes are of great significance as reactive intermediates implicated in diverse chemical and biological systems. The aqueous iron(IV)-oxo complex (FeaqIVO2+) is the simplest but one of the most powerful ferryl ion species, which possesses a high-spin state, high reduction potential, and long lifetime. It has been well documented that FeaqIVO2+ reacts with organic compounds through various pathways (hydrogen-atom, hydride, oxygen-atom, and electron transfer as well as electrophilic addition) at moderate reaction rates and show selective reactivity toward inorganic ions prevailing in natural water, which single out FeaqIVO2+ as a superior candidate for oxidative water treatment. This review provides state-of-the-art knowledge on the chemical properties and oxidation mechanism and kinetics of FeaqIVO2+, with special attention to the similarities and differences to two representative free radicals (hydroxyl radical and sulfate radical). Moreover, the prospective role of FeaqIVO2+ in Feaq2+ activation-initiated advanced oxidation processes (AOPs) has been intensively investigated over the past 20 years, which has significantly challenged the conventional recognition that free radicals dominated in these AOPs. The latest progress in identifying the contribution of FeaqIVO2+ in Feaq2+-based AOPs is thereby reviewed, highlighting controversies on the nature of the reactive oxidants formed in several Feaq2+ activated peroxide and oxyacid processes. Finally, future perspectives for advancing the evaluation of FeaqIVO2+ reactivity from an engineering viewpoint are proposed.


Assuntos
Oxidantes , Purificação da Água , Compostos Ferrosos , Radicais Livres , Ferro , Oxidantes/química , Oxirredução , Estresse Oxidativo , Oxigênio/química , Estudos Prospectivos
5.
Chemosphere ; 282: 131057, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34470151

RESUMO

Recently, the combination of peroxymonosulfate (PMS) and hydroxylamine (HA) has been proposed as a green and efficient sulfate radical ()-based advanced oxidation process (AOP) for eliminating organic contaminants. However, we found that toxic nitrosated and nitrated aromatic compounds were generated during the treatment of phenolic compounds by PMS/HA system, indicating the involvement of reactive nitrogen species (RNS) during the interaction of PMS with HA. Specifically, considerable production of p-nitrosophenol (p-NSP) and mononitrophenol were obtained when phenol was oxidized by PMS/HA system under various conditions. At the molar ratio between HA and PMS of 1.0 and pH 5.0, sum of the yields of p-NSP and nitrophenols reached their maxima (around 50%). Moreover, production of p-NSP was inhibited while that of nitrophenols was promoted when applied NH2OH1/2H2SO4 was replaced by NH2OHHCl, which was possibly related to the formation of secondary reactive species induced by the reaction of with chloride ion. Further, formation of undesirable nitrosated and nitrated aromatic products was obtained in the treatment of other phenolic compounds including acetaminophen, bisphenol A, and bisphenol S by PMS/HA system. Considering the toxicity of nitrosated and nitrated aromatic compounds, practical application of PMS/HA system for environmental decontamination should be scrutinized.


Assuntos
Nitratos , Poluentes Químicos da Água , Hidroxilamina , Hidroxilaminas , Oxirredução , Peróxidos , Fenóis , Poluentes Químicos da Água/análise
6.
Water Res ; 203: 117513, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34392042

RESUMO

Permanganate (Mn(VII)) has been widely studied for removal of emerging organic contaminants (EOCs) in water treatment and in situ chemical oxidation process. Studies on the reactive intermediate manganese products (e.g., Mn(III) and manganese dioxide (MnO2)) generated from Mn(VII) reduction by EOCs in recent decades shed new light on Mn(VII) oxidation process. The present work summarizes the latest research findings on Mn(VII) reactions with a wide range of EOCs (including phenols, olefins, and amines) in detailed aspects of reaction kinetics, oxidation products, and toxicity changes, along with special emphasis on the impacts of intermediate manganese products (mainly Mn(III) and MnO2) in-situ formed. Mn(VII) shows appreciable reactivities towards EOCs with apparent second-order rate constants (kapp) generally decrease in the order of olefins (kapp = 0.3 - 2.1 × 104 M-1s-1) > phenols (kapp = 0.03 - 460 M-1s-1) > amines (kapp = 3.5 × 10-3 - 305.3 M-1s-1) at neutral pH. Phenolic benzene ring (for phenols), (conjugated) double bond (for olefins), primary amine group and the N-containing heterocyclic ring (for amines) are the most reactive sites towards Mn(VII) oxidation, leading to the formation of products with different structures (e.g., hydroxylated, aldehyde, carbonyl, quinone-like, polymeric, ring-opening, nitroso/nitro and C-N cleavage products). Destruction of functional groups of EOCs (e.g., benzene ring, (conjugated) double bond, and N-containing heterocyclic) by Mn(VII) tends to decrease solution toxicity, while oxidation products with higher toxicity than parent EOCs (e.g., quinone-like products in the case of phenolic EOCs) are sometimes formed. Mn(III) stabilized by model or unknown ligands remarkably accelerates phenolic EOCs oxidation by Mn(VII) under acidic to neutral conditions, while MnO2 enhances the oxidation efficiency of phenolic and amine EOCs by Mn(VII) at acidic pH. The intermediate manganese products participate in Mn(VII) oxidation process most likely as both oxidants and catalysts with their generation/stability/reactivity affecting by the presence of NOM, ligand, cations, and anions in water matrices. This work presents the state-of-the-art findings on Mn(VII) oxidation of EOCs, especially highlights the significant roles of manganese products, which advances our understanding on Mn(VII) oxidation and its application in future water treatment processes.


Assuntos
Compostos de Manganês , Óxidos , Cinética , Manganês , Oxirredução , Estresse Oxidativo
7.
J Hazard Mater ; 417: 126152, 2021 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-34229411

RESUMO

Synthetic manganese oxides had been widely investigated to activate peroxymonosulfate (PMS) for contaminant removal in recent years. The generation of reactive oxygen species (ROS, e.g., radicals) was believed to be the primary PMS activation pathways. In this work, we report that natural manganese-containing minerals (NMMs) were also effective for PMS activation to degrade bisphenols in water. Moreover, a nonradical pathway different from literatures, was confirmed according to scavenging tests, electron paramagnetic resonance (EPR) characterization, chemical probing, solvent exchange, and Raman and electrochemical analysis. It was verified that PMS complexed with the mineral surface via inner-sphere interaction. This surface interaction improved its reactivity towards the probe compounds, bisphenols. Taking bisphenol AF (BPAF) as an example, its degradation rate was related to surface area and dosages of the mineral. Water constituents such as Cl-, HCO3-, and NOM had negligible impact on BPAF removal. The activity of the mineral was kept in an 80-hour continuous flow test. The PMS/NMM coupled oxidation degraded BPAF through direct electron transfer, and the degradation intermediates further underwent hydroxylation, bond cleavage, H-atom substitution, aromatic ring-opening, and decarboxylation. Consequently, eco-toxicity of BPAF can be reduced during the oxidation.


Assuntos
Manganês , Peróxidos , Minerais , Oxirredução
8.
Water Res ; 193: 116856, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33550170

RESUMO

In recent years, the activation of persulfates (peroxydisulfate (PDS) and peroxymonosulfate (PMS)) via transition metal ions for contaminants degradation has received extensive attention in water treatment. There has been growing interest on the mechanism (radical versus non-radical pathway) of activation processes. Interestingly, in contrast to copper, iron or cobalt ions regarded as effective activators for persulfates, manganese ion (Mn(II)) is inefficient for persulfates activation. Inspired by the enhanced stability of manganese species by ligands, this study for the first time systematically investigated the Mn(II)/persulfates with different ligands as a novel oxidation technology. UV-vis spectrometry, chemical probing method and mass spectrometry were used to explore the reactive intermediate (free radical versus high-valent manganese species) therein. It was surprisingly found that the oxidation efficiency of Mn(II)/ligand/persulfates system was highly dependent on the nature of persulfates and ligands. Mn(II) chelated by amino ligands such as ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetate (NTA) could efficiently trigger the oxidation of contaminants (e.g., recalcitrant compounds nitrophenol, benzoic acid and atrazine) by PMS, suggesting a promising Mn(II)/ligand/PMS technology for environmental decontamination especially under manganese-rich conditions. High-valent Mn species (Mn(V)) but not free radicals was demonstrated to be the dominant reactive intermediate, where Mn(III) species played a vital role in Mn(V) generation. The formation of Mn(III) species was found to be affected by the reactivity of persulfates and the type of ligands, thus influencing its further oxidation to Mn(V) species. This study presents a new oxidation process based on the combination of PMS and Mn(II) complex and broadens the knowledge of persulfates activation as well as manganese chemistry for decontamination in water treatment.


Assuntos
Manganês , Peróxidos , Ferro , Oxirredução
9.
J Hazard Mater ; 403: 123834, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33264920

RESUMO

Permanganate (Mn(VII)) as a selective oxidant has been widely used in water treatment process. Recently, peroxymonosulfate (PMS) was recognized as an emerging selective oxidant, which showed appreciable reactivity toward organic compounds containing electron-rich functional groups. In this study, the oxidation of a model fluoroquinolone antibiotic levofloxacin (LEV) by Mn(VII) and PMS was comparatively investigated. Degradation of LEV by PMS followed second-order kinetics and showed strong pH dependency with apparent second-order rate constants (kapp) of 0.15-26.52 M-1 s-1 at pH 5.0-10.0. Oxidation of LEV by Mn(VII) showed autocatalysis at pH 5.0-7.0, while no autocatalysis was observed at pH 8.0-10.0 (kapp = 2.23-4.16 M-1 s-1). Such unusual oxidation kinetics was attributed to the in-situ formed MnO2 from Mn(VII) consumption. The performance of PMS and Mn(VII) for the degradation of LEV was also examined in real waters. PMS primarily react with the aliphatic N4 amine on the piperazine ring of LEV, and Mn(VII) reacted with both the aliphatic N4 amine and aromatic N1 amine. Both PMS and Mn(VII) could efficiently eliminate the antibiotic activity of LEV. Benzoquinone showed activating effect on both PMS and Mn(VII) oxidation, but their activation mechanisms were totally different.


Assuntos
Compostos de Manganês , Poluentes Químicos da Água , Benzoquinonas , Cinética , Levofloxacino , Oxirredução , Óxidos , Peróxidos , Quinonas
10.
Water Res ; 189: 116625, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33227612

RESUMO

UV/sulfite process in the absence of oxygen was previously applied as an advanced reduction process for the removal of many halogenated organics and inorganics in water and wastewater. Here, it was found that UV/sulfite process in the presence of oxygen could act as an advanced oxidation process. Specifically, the oxysulfur radicals (including sulfate radical (SO4·-) and sulfite/peroxomonosulfate radicals (SO3·-/SO5·-)) played important roles on the degradation of iopamidol (IPM) as a typical iodinated contrast media (ICM). Furthermore, the contribution of SO4·- on IPM removal gradually increased as pH increased from 5 to 7 and that of SO3·-/SO5·- decreased. Besides, all water quality parameters (i.e., chloride (Cl-), iodide (I-) and natural organic matter (NOM)) investigated here exhibited inhibitory effect on IPM removal. Three inorganic iodine species (i.e., I-, reactive iodine species and iodate (IO3-)) were detected in UV/sulfite process in the presence of oxygen, while only I- was detected in that without oxygen. During UV/sulfite/ethanol, UV photolysis and UV/peroxydisulfate (PDS)/tert-butyl alcohol (TBA) processes, thirteen transformation products including eleven deiodinated products of IPM were identified by ultra HPLC quadrupole time of flight-mass spectrometry (UPLC-Q-TOF-MS). Besides, these products generated by direct UV photolysis, SO4·- and SO3·-/SO5·- were further distinguished. The acute toxicity assay of Vibrio fischeri indicated that transformation products by UV/sulfite under aerobic conditions were less toxic than that by direct UV photolysis.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Iopamidol , Cinética , Oxirredução , Oxigênio , Fotólise , Sulfitos , Raios Ultravioleta , Poluentes Químicos da Água/análise
11.
Sci Total Environ ; 765: 142762, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33071111

RESUMO

Based on previous reports, UV/sulfite process is generally used as an advanced reduction process (ARP) since eaq- and/or ∙H, both with strong reduction potential, could be substantially generated herein. Very recently, the combination of UV and sulfite as an advanced oxidation process (AOP) or an oxidation-reduction coupling process has attracted increasing interest due to the yield of SO4∙- and/or HO∙. Herein, the application of UV/sulfite as an ARP and AOP (or oxidation-reduction coupling process) during water and wastewater treatments is reviewed respectively. (1) In the absence of O2, UV/sulfite works as an ARP. The generation mechanism of reactive reduction species and various contaminants removal (including degradation kinetics and efficiency, decomposition mechanisms, effects of some factors, etc.) is summarized in detail and systematically. Moreover, both the application of different types of UV lights and the economic evaluation are summarized systematically. (2) In the presence of O2, UV/sulfite could be used as an AOP or oxidation-reduction coupling process. The generation mechanism of reactive oxidation species and influencing factors is also presented in detail. Moreover, two ways (including homogeneous and heterogeneous activation) used to enhance the UV/sulfite oxidation potential are summarized respectively. Moreover, several knowledge gaps and research needs for further research are proposed. Overall, this review provides an overview for in-depth understanding of UV/sulfite as an ARP or AOP (oxidation-reduction coupling process) during water and wastewater treatments.

12.
Chemosphere ; 262: 128390, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182154

RESUMO

Hydroxylamine (HA) driven advanced oxidation processes (HAOPs) for water treatment have attracted extensive attention due to the acceleration of reactive intermediates generation and the improvement on the elimination effectiveness of target contaminants. In this review, HAOPs were categorized into three parts: (1) direct reaction of HA with oxidants (e.g., hydrogen peroxide (H2O2), peroxymonosulfate (PMS), ozone (O3), ferrate (Fe(VI)), periodate (IO4-)); (2) HA driven homogeneous Fenton/Fenton-like system (Fe(II)/peroxide/HA system, Cu(II)/O2/HA system, Cu(II)/peroxide/HA system, Ce(IV)/H2O2/HA system); (3) HA driven heterogeneous Fe/Cu-Fenton/Fenton-like system (iron-bearing material/peroxide/HA system, copper-bearing material/peroxide/HA system, bimetallic composite/peroxide/HA system). Degradation efficiency of the target pollutant, reactive intermediates, and effective pH range of various HAOPs were summarized. Further, corresponding reaction mechanism was elaborated. For the direct reaction of HA with oxidants, improvement of pollutants degradation was achieved through the generation of secondary reactive intermediates which had higher reactivity compared with the parent oxidant. For HA driven homogeneous and heterogeneous Fe/Cu-Fenton/Fenton-like system, improvement of pollutants degradation was achieved mainly via the acceleration of redox cycle of Fe(III)/Fe(II) or Cu(II)/Cu(I) and subsequent generation of reactive intermediates, which avoided the drawbacks of classical Fenton/Fenton-like system. In addition, HA driven homogeneous Fe/Cu-Fenton/Fenton-like system with heterogeneous counterpart were compared. Further, formation of oxidation products from HA in various HAOPs was summarized. Finally, the challenges and prospects in this field were discussed.


Assuntos
Hidroxilamina/química , Purificação da Água/métodos , Cobre , Compostos Férricos , Peróxido de Hidrogênio , Hidroxilaminas , Ferro , Oxidantes , Oxirredução , Peróxidos , Água , Poluentes Químicos da Água
13.
Water Res ; 185: 116234, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32736280

RESUMO

X-ray contrast media (ICM), as the most widely used intravascular pharmaceuticals, have been frequently detected in various environmental compartments. ICM have attracted increasingly scientific interest owing to their role as an iodine contributor, resulting in the high risk of forming toxic iodinated byproducts (I-BPs) during water treatment. In this review, we present the state-of-the-art findings relating to the removal efficiency as well as oxidation intermediates of ICM by conventional and advanced oxidation processes. Moreover, formation of specific small-molecular I-BPs (e.g., iodoacetic acid and iodoform) during these processes is also summarized. Conventional oxidants and disinfectants including chlorine (HOCl) and chloramine (NH2Cl) have low reactivities towards ICM with HOCl being more reactive. Iodinated/deiodinated intermediates are generated from reactions of HOCl/NH2Cl with ICM, and they can be further transformed into small-molecular I-BPs. Types of disinfectants and ICM as well as solution conditions (e.g., presence of bromide (Br-) and natural organic matters (NOM)) display significant impact on formation of I-BPs during chlor(am)ination of ICM. Uncatalyzed advanced oxidation process (AOPs) involving ozone (O3) and ferrate (Fe(VI)) exhibit slow to mild reactivities towards ICM, usually leading to their incomplete removal under typical water treatment conditions. In contrast, UV photolysis and catalyzed AOPs including hydroxyl radical (HO•) and/or sulfate radical (SO4.-) based AOPs (e.g., UV/hydrogen peroxide, UV/persulfate, UV/peroxymonosulfate (PMS), and CuO/PMS) and reactive chlorine species (RCS) involved AOPs (e.g., UV/HOCl and UV/NH2Cl) can effectively eliminate ICM under various conditions. Components of water matrix (e.g., chloride (Cl-), Br-, bicarbonate (HCO3-), and NOM) have great impact on oxidation efficiency of ICM by catalyzed AOPs. Generally, similar intermediates are formed from ICM oxidation by UV photolysis and AOPs, mainly resulting from a series reactions of the side chain and/or C-I groups (e.g. cleavage, dealkylation, oxidation, and rearrange). Further oxidation or disinfection of these intermediates leads to formation of small-molecular I-BPs. Pre-oxidation of ICM-containing waters by AOPs tends to increase formation of I-BPs during post-disinfection process, while this trend also depends on the oxidation processes applied and solution conditions. This review summarizes the latest research findings relating to ICM transformation and (by)products formation during disinfection and AOPs in water treatment, which has great implications for the practical applications of these technologies.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cloro , Meios de Contraste , Desinfecção , Oxirredução , Raios Ultravioleta , Poluentes Químicos da Água/análise , Raios X
14.
Water Res ; 177: 115752, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32283433

RESUMO

As a common animal feed additive, p-arsanilic acid (p-AsA) is thought to be excreted with little uptake and unchanged chemical structure, threatening the environment by potentially releasing more toxic inorganic arsenic. We herein investigated the removal of arsenic by in situ formed ferric (oxyhydr)oxides with the promotion of p-AsA degradation in Fe(II)/peroxydisulfate (PDS) system. Results showed that under acid conditions, p-AsA degraded very quickly and over 99% of p-AsA (5 µM) was degraded within 10 min at the optimal dosage of Fe(II) (100 µM) and PDS (150 µM) at pH 3, while less than 66.4% of arsenic was removed at pH 3-5. Higher pH (3-7) would inhibit the degradation of p-AsA but promote the arsenic removal. At pH 6-7, over 98.5% of total arsenic was removed, while the degradation efficiency of p-AsA was lower than 52.4%. HPLC-ICP-MS results indicated that the arsenic group was cleaved from p-AsA in the form of As(III) and then rapidly oxidized to As(V). FTIR and XPS analysis indicated that both As(V) products and residual p-AsA were bonded to ferric (oxyhydr)oxides via hydroxyl groups. Common cations (e.g., Na+, Ca2+, Mg2+) and anions such as Cl-, SO42-, CO32- had no significant influence on arsenic removal, while SiO32-, PO43- and HA inhibited the removal of total arsenic, mainly by affecting the zeta potential of iron particles. In summary, the Fe(II)/PDS process, as an efficient method for partial oxidation and simultaneous adsorption of p-AsA under near-neutral conditions, is expected to control the potential environmental risks of p-AsA.


Assuntos
Arsênio , Poluentes Químicos da Água , Adsorção , Animais , Ácido Arsanílico , Compostos Férricos , Compostos Ferrosos , Concentração de Íons de Hidrogênio , Ferro , Oxirredução
15.
Water Res ; 176: 115725, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32222545

RESUMO

Sulfate radical-based advanced oxidation processes (SR-AOPs) show a good prospect for effective elimination of organic contaminants in water due to the powerful oxidation capability and good adaptability of sulfate radical (SO4•-). However, great concerns have been raised on occurrence of the carcinogenic byproduct bromate (BrO3-) in SR-AOPs. The present article aims to provide a critical review on BrO3- formation during bromine (Br)-containing water oxidation by various SR-AOPs. Potential reaction mechanisms are elaborated, mainly involving the sequential oxidation of bromide (Br-) by SO4•- to Br-containing radicals (e.g., bromine atom (Br•)) and then to hypobromous acid/hypobromite (HOBr/OBr-), which acts as the requisite intermediate for BrO3- formation. Some key influencing factors on BrO3- formation are discussed. Particularly, dissolved organic matter (DOM) as a component ubiquitously present in aquatic environments shows a significant suppression effect on BrO3- formation, primarily attributed to the reduction of Br• by DOM to Br-. The reaction of Br• with DOM can hardly produce organic brominated byproducts, while their formation is mainly due to the bromination of HOBr/OBr- generated through nonradical pathways such as the direct reaction of Br- with oxidants (e.g., peroxymonosulfate (PMS)) or other reactive species derived from catalytic activators (e.g., Co(III) in the Co(II)/PMS process). The debromination of brominated pollutants during their oxidation by SO4•- results in the release of Br-, which, however, is not further transformed to BrO3- until coexisting organic matters are mineralized nearly completely. Furthermore, possible strategies for control of BrO3- formation in SR-AOPs as well as the future research needs are proposed.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Bromatos , Brometos , Oxirredução , Sulfatos
16.
Chemosphere ; 248: 126000, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32007774

RESUMO

Recently, the technology for the remediation of Cr(VI) pollutant via bisulfite has been found to be effective for fast elimination of co-contaminants especially in acidic solution, where free radicals (i.e., sulfate and/or hydroxyl radicals) are proposed to act as dominant oxidants. Here, it was demonstrated that high-valent Cr intermediate played a primary role in the Cr(VI)/bisulfite system through applying methyl phenyl sulfoxide (PMSO) as a probe. PMSO was effectively transformed in the Cr(VI)/bisulfite system with appreciable generation of methyl phenyl sulfone (PMSO2) product, while PMSO was oxidized by free radicals to hydroxylated and/or polymeric products rather than PMSO2. The involvement of high-valent Cr species was further supported by the formation of 18O-labeled PMSO2 in 18O labeling experiments, where the incorporation of 18O from solvent water H218O into PMSO2 was likely resulted from competitive oxygen exchange of Cr-oxo species with water. The relative contribution of high valent Cr species versus free radicals was evaluated based on the yield of PMSO2, which was dependent on the solution chemistry such as [Cr(VI)]:[bisulfite] ratio and dissolved oxygen. This work advances the understanding of chromium chemistry involved in the Cr(VI)/bisulfite system. These findings have important implications on the application of this "waste control by waste" technology for environmental decontamination.


Assuntos
Cromo/química , Poluentes Ambientais/química , Sulfitos/química , Derivados de Benzeno , Radicais Livres , Radical Hidroxila , Modelos Químicos , Oxidantes , Oxirredução , Sulfatos
17.
Water Res ; 172: 115504, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31981901

RESUMO

Activation of persulfates (i.e., peroxydisulfate (PDS) and peroxymonosulfate (PMS)) by nanoscale zero-valent iron (nZVI) is reported to be effective in oxidative treatment of environmental contaminants. It has been widely accepted in numerous literature that sulfate radical (SO4•-) formed from the decomposition of persulfates activated by aqueous Fe(II) released from nZVI corrosion is responsible for the oxidative performance in nZVI/persulfates systems. In this work, by employing methyl phenyl sulfoxide (PMSO) as a probe, we demonstrated that the activation of persulfates by nZVI through electron transfer led to SO4•- formation, while the homogeneous activation of persulfate by the released Fe(II) resulted in ferryl ion species (Fe(IV)) generation in nZVI/persulfates systems. Similarly, nanoscale zero-valent aluminum (nZVAl) and zinc (nZVZn) were also demonstrated to be able to donate electron to persulfates leading to SO4•- formation. However, the insulative aluminum oxide shell hindered the electron transfer leading to the poor persulfates decomposition, while the conductive iron and zinc oxide shell enabled the electron transfer process resulting in a continuous generation of SO4•-. Further, it was obtained that the relative contribution of SO4•- and Fe(IV) in nZVI/persulfates systems was independent of the initial concentration of nZVI and PDS, but was positively correlated with PMS concentration. In addition, the increase of pH from 3 to 7 led to the decrease of the relative contribution of Fe(IV), which was rationalized by the decrease of availability of aqueous Fe(II) at higher pH. Our findings not only shed lights on the nature of the reactive intermediate formed in the nZVI/persulfates systems, but also unprecedentedly distinguished the surface activation of persulfates from the homogeneous catalysis process.


Assuntos
Ferro , Poluentes Químicos da Água , Peróxidos , Sulfatos
18.
Water Res ; 164: 114957, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31421513

RESUMO

Iron chelators are often used to improve the performance of Fe(II) activated peroxides (e.g., peroxydisulfate (PDS) and hydrogen peroxide (H2O2)) for oxidative water treatment over a wide pH range due to the enhanced solubility of iron in the presence of chelators at high pH. In this study, we compared the effect of various chelators on the production and nature of the reactive intermediate formed in Fe(II)/PDS and Fe(II)/H2O2 systems by using methyl phenyl sulfoxide (PMSO) as a probe, which could distinguish ferryl ion (Fe(IV)) from free radicals (•OH and SO4•-) due to their marked difference in product formation. Six representative chelators (oxalate acid (OA), citric acid (CA), nitrilotriacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA), pyrophosphate (PPP), and tetrapolyphosphate (TPP)) which covered the commonly used polycarboxylates, aminocarboxylates, and polyphosphates ligands were selected. In chelator assisted Fe(II)/PDS systems, the highest PMSO transformation efficiency at pH 3-9 was obtained in cases with polycarboxylates, due to their higher reactivity to PDS activation, lower steric hindrance, and stronger ability in promoting Fe(II)/Fe(III) cycle. Comparatively, in chelator assisted Fe(II)/H2O2 systems, TPP addition achieved the best performance in PMSO transformation at pH > 5. Moreover, the yield of Fe(IV) indicative product (methyl phenyl sulfone, PMSO2) decreased with increasing chelator/Fe(II) molar ratio, but was independent on pH in cases of PDS, indicating that chelator altered reactive intermediate nature from Fe(IV) to SO4•- and Fe(IV) yield was not sensitive to pH. In cases of H2O2, chelator decreased PMSO2 production while promoting PMSO loss at near-neutral pH, suggesting that Fe(II)-chelator complexes also tended to catalyze H2O2 to generate •OH rather than Fe(IV).


Assuntos
Compostos Ferrosos , Peróxido de Hidrogênio , Catálise , Compostos Férricos , Oxirredução
19.
Environ Sci Technol ; 53(15): 9054-9062, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31282149

RESUMO

Recent studies have reported that toxic nitrated aromatic products are generated during treatment of phenolic compounds by thermally activated peroxydisulfate (thermal/PDS) in the presence of nitrite (NO2-). This work explored the potential of carbon materials on controlling the formation of nitrated aromatic products using phenol as a model compound. In the presence of selected carbon materials including diverse carbon nanotubes (CNT) and powdered activated carbon (PAC), the transformation kinetics of phenol was significantly enhanced, primarily attributed to nonradical activation of PDS by carbon materials. Nitrophenols (NPs) including 2-NP and 4-NP were formed in phenol oxidation by the thermal/PDS/NO2- process, due to the reaction of phenol with reactive nitrogen species generated from NO2- oxidation. The addition of carbon materials obviously inhibited NPs formation under various experimental conditions. The bonding of nitro groups on the CNT surface was clearly confirmed by means of various characterizations, probably resulting from the competitive reaction of reactive nitrogen species with CNT vs phenol. The controlling effect of carbon materials was also verified in the cases of other phenolic compounds. Therefore, the addition of carbon materials may be a promising approach to control the formation of undesirable nitrated byproducts by the thermal/PDS process in the presence of NO2-.


Assuntos
Nanotubos de Carbono , Nitritos , Nitratos , Óxidos de Nitrogênio , Oxirredução , Fenóis
20.
Chemosphere ; 235: 104-112, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31255750

RESUMO

In this study, the potential applicability of potassium permanganate (Mn(VII)) for anilines elimination was systematically investigated firstly, with a focus on the effect of manganese intermediates on the kinetics of anilines versus phenols. It was found that Mn(VII) could fairly oxidize anilines, where the second-order rate constants (kMn(VII)) values for anilines always decreased as pH increased from 5 to 9. This interesting pH-dependency was successfully described by the kinetic models proposed in literature to account for the unusual pH-rate profiles for phenols, where the formation of intermediates between Mn(VII) and phenols or anilines was likely involved. The effect of manganese products such as MnO2 and Mn(III) on the oxidation of anilines by Mn(VII) was demonstrated. Under slightly acidic conditions, the reactions of Mn(VII) with anilines displayed autocatalysis, suggesting a similar catalytic role of MnO2 formed in situ as compared to phenols. Several ligands (e.g., pyrophosphate) inhibited the formation of MnO2 colloids and lowered the oxidation rates of anilines by Mn(VII) at acidic pH, while these ligands greatly accelerated the kinetics of phenols under similar conditions. The contrasting effects of ligands might be mainly attributed to the different reactivity of ligand-stabilized Mn(III) formed in situ toward anilines vs phenols. The complex effect of humic acid was highly dependent on solution pH, possible due to the dual role of humic acid that it could act as a reductant (competitively consuming Mn(VII) and phenoxy or aniline radical) as well as a ligand (stabilizing manganese intermediates such as Mn(III) species) to affect Mn(VII) reactions.


Assuntos
Compostos de Anilina/química , Compostos de Manganês/química , Manganês/química , Óxidos/química , Permanganato de Potássio/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Compostos de Anilina/análise , Catálise , Substâncias Húmicas , Oxirredução , Fenóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA