Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 344: 123292, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38182012

RESUMO

To remediate the Cr(VI)-organic co-contaminants in a non-ferrous mining area, a gallic acid (GA) accelerated lead-zinc smelting slag (LZSS, a mine-sourced waste) mediated peroxodisulfate (PDS) Fenton-like system was constructed for degradation of two typical flotation reagents (benzotriazole and N-hydroxyphthalimide). LZSS acting as an in-situ Fe source in the Fenton-like process, could continuously release Fe species, while GA as a chelate with reducing properties was able to accelerate the rate-limiting step of Fe(III)/Fe(II) cycle to enhance the production of reactive oxygen species (ROS). In the LZSS/PDS/GA system, produced SO4•-, •OH and Fe(IV) jointly contributed to the contaminant removal through radical/nonradical pathways. However, when Cr(VI) coexisted with organic pollutants in the LZSS/PDS/GA system, the reduction of Cr(VI) consumed the electrons that otherwise would have been available for activation of PDS, resulting in fewer different ROS being produced. The increased concentration of GA, as an electron donor, promoted the production of SO4•-, but this promoting effect gradually diminished with increasing Cr(VI). Overall, the dominant ROS gradually transformed from Fe(IV) to SO4•-/•OH as the GA level increased or the Cr(VI) level decreased. Therefore, regulation of the relative roles of ROS by adjusting either the GA dosage or the Cr(VI) levels in the wastewater can improve availability of ROS for further specific removal of pollutants. This study offers an all-in-one solution for utilization of LZSS industrial waste and degradation of flotation reagents, and it also provides a new insight into the advanced environmental application of GA in remediation of Cr(VI)-organic co-contamination.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Indicadores e Reagentes , Espécies Reativas de Oxigênio , Ferro , Zinco , Oxirredução , Cromo , Compostos Orgânicos , Poluentes Químicos da Água/análise
2.
J Hazard Mater ; 465: 133052, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056257

RESUMO

The sulfate-reducing efficiency of sulfate-reducing bacteria (SRB) is strongly influenced by the presence of oxygen, but little is known about the oxygen tolerance mechanism of SRB and the effect of oxygen on the metalliferous immobilization by SRB. The performance evaluation, identification of bioprecipitates, and microbial and metabolic process analyses were used here to investigate the As3+ immobilization mechanisms and survival strategies of the SRB1 consortium under different oxygen-containing environments. Results indicated that the sulfate reduction efficiency was significantly decreased under aerobic (47.37%) compared with anaerobic conditions (66.72%). SEM analysis showed that under anaerobic and aerobic conditions, the morphologies of mineral particles were different, whereas XRD and XPS analyses showed that the most of As3+ bioprecipitates under both conditions were arsenic minerals such as AsS and As4S4. The abundances of Clostridium_sensu_stricto_1, Desulfovibrio, and Thiomonas anaerobic bacteria were significantly higher under anaerobic than aerobic conditions, whereas the aerobic Pseudomonas showed an opposite trend. Network analysis revealed that Desulfovibrio was positively correlated with Pseudomonas. Metabolic process analysis confirmed that under aerobic conditions the SRB1 consortium generated additional extracellular polymeric substances (rich in functionalities such as Fe-O, SO, CO, and -OH) and the anti-oxidative enzyme superoxide dismutase to resist As3+ stress and oxygen toxicity. New insights are provided here into the oxygen tolerance and detoxification mechanism of SRB and provide a basis for the future remediation of heavy metal(loid)-contaminated environments.


Assuntos
Desulfovibrio , Consórcios Microbianos , Anaerobiose , Desulfovibrio/metabolismo , Sulfatos/metabolismo , Oxigênio/metabolismo
3.
J Hazard Mater ; 459: 132005, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37467603

RESUMO

Many non-ferrous metal mining and smelting activities have caused severe metal(loid) contamination in the local soil environment. The metabolic activity of soil microorganisms in four areas affected by different metallurgical activities (production vs. waste disposal) was characterized using a contamination gradient from the contaminated site to the surrounding soils. Results indicated that the soil microcalorimetric and enzyme activities were correlated with the fractionated metal(loid) properties (p < 0.05). All four areas had high total As, Cd, Pb, Sb, and Zn concentrations, of which mobile As, Cu, Ni, Pb, Sb, and Zn were higher in the contaminated sites than the surrounding sites, reflecting an elevated environmental risk. Three contaminated site areas had lower microbial activities than their surrounding sites suggesting that high metal(loid) concentrations inhibited soil microbial communities. Interestingly, the fourth area (tailing pond) showed an opposite trend (i.e., increased microbial activity in contaminated vs. surrounding areas). The microbial thermodynamic parameters of this contaminated site were higher than its surrounding sites, suggesting that the selected microbial communities can develop a functional resistance to metal(loid)s stress. This study provides a theoretical basis for ecological prevention and control of metal-polluted areas.


Assuntos
Metaloides , Metais Pesados , Poluentes do Solo , Metais Pesados/toxicidade , Metais Pesados/análise , Chumbo , Monitoramento Ambiental/métodos , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Solo/química , China
4.
J Hazard Mater ; 457: 131797, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37302188

RESUMO

The heterogeneous-homogeneous coupled Fenton (HHCF) processes combine the advantages of rapid reaction and the catalyst reuse, which makes them attractive for wastewater treatment. Nevertheless, the lack of both, cost-effective catalysts and the desirable Fe3+/Fe2+ conversion mediators limit the development of HHCF processes. This study investigates a prospective HHCF process, in which solid waste copper slag (CS) and dithionite (DNT) act as catalyst and mediator of Fe3+/Fe2+ transformation, respectively. DNT enables controlled leaching of iron and a highly efficient homogeneous Fe3+/Fe2+ cycle by dissociating to SO2- • under acidic conditions, leading to the enhanced H2O2 decomposition and •OH generation (from 48 µmol/L to 399 µmol/L) for p-chloroaniline (p-CA) degradation. The removal rate of p-CA in the CS/DNT/H2O2 system increased by 30 times in comparison with the CS/H2O2 system (increased from 1.21 × 10-3 min-1 to 3.61 × 10-2 min-1). Moreover, batch dosing of H2O2 can greatly promote the yield of •OH (from 399 µmol/L to 627 µmol/L), by mitigating the side reactions between H2O2 and SO2- •. This study highlights the importance of the iron cycle regulation for improvement of the Fenton efficiency and develops a cost-effective Fenton system for organic contaminants elimination in wastewater.

5.
J Hazard Mater ; 451: 131153, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36893604

RESUMO

There are few studies on concurrent bacterial and fungal community assembly processes that govern the metal(loid)s biogeochemical cycles at smelters. Here, a systematic investigation combined geochemical characterization, co-occurrence patterns, and assembly mechanisms of bacterial and fungal communities inhabiting soils around an abandoned arsenic smelter. Acidobacteriota, Actinobacteriota, Chloroflexi, and Pseudomonadota were dominant in bacterial communities, whereas Ascomycota and Basidiomycota dominated fungal communities. The random forest model indicated the bioavailable fractions of Fe (9.58%) were the main positive factor driving the beta diversity of bacterial communities, and the total N (8.09%) was the main negative factor for fungal communities. Microbe-contaminant interactions demonstrate the positive impact of the bioavailable fractions of certain metal(loid)s on bacteria (Comamonadaceae and Rhodocyclaceae) and fungi (Meruliaceae and Pleosporaceae). The fungal co-occurrence networks exhibited more connectivity and complexity than the bacterial networks. The keystone taxa were identified in bacterial (including Diplorickettsiaceae, norank_o_Candidatus_Woesebacteria, norank_o_norank_c_AT-s3-28, norank_o_norank_c_bacteriap25, and Phycisphaeraceae) and fungal (including Biatriosporaceae, Ganodermataceae, Peniophoraceae, Phaeosphaeriaceae, Polyporaceae, Teichosporaceae, Trichomeriaceae, Wrightoporiaceae, and Xylariaceae) communities. Meanwhile, community assembly analysis revealed that deterministic processes dominated the microbial community assemblies, which were highly impacted by pH, total N, and total and bioavailable metal(loid) content. This study provides helpful information to develop bioremediation strategies for the mitigation of metal(loid)s-polluted soils.


Assuntos
Micobioma , Solo/química , Metais/análise , Bactérias , Biodegradação Ambiental , Microbiologia do Solo
6.
Environ Sci Technol ; 57(5): 1930-1939, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36689325

RESUMO

The photosensitized transformation of organic chemicals is an important degradation mechanism in natural surface waters, aerosols, and water films on surfaces. Dissolved organic matter including humic-like substances (HS), acting as photosensitizers that participate in electron transfer reactions, can generate a variety of reactive species, such as OH radicals and excited triplet-state HS (3HS*), which promote the degradation of organic compounds. We use phthalate esters, which are important contaminants found in wastewaters, landfills, soils, rivers, lakes, groundwaters, and mine tailings. We use phthalate esters as probes to study the reactivity of HS irradiated with artificial sunlight. Phthalate esters with different side-chain lengths were used as probes for elucidation of reaction mechanisms using 2H and 13C isotope fractionation. Reference experiments with the artificial photosensitizers 4,5,6,7-tetrachloro-2',4',5',7'-tetraiodofluorescein (Rose Bengal), 3-methoxy-acetophenone (3-MAP), and 4-methoxybenzaldehyde (4-MBA) yielded characteristic fractionation factors (-4 ± 1, -4 ± 2, and -4 ± 1‰ for 2H; 0.7 ± 0.2, 1.0 ± 0.4, and 0.8 ± 0.2‰ for 13C), allowing interpretation of reaction mechanisms of humic substances with phthalate esters. The correlation of 2H and 13C fractions can be used diagnostically to determine photosensitized reactions in the environment and to differentiate among biodegradation, hydrolysis, and photosensitized HS reaction.


Assuntos
Substâncias Húmicas , Poluentes Químicos da Água , Substâncias Húmicas/análise , Ésteres , Fármacos Fotossensibilizantes , Isótopos de Carbono , Poluentes Químicos da Água/análise , Fotólise
7.
Chemosphere ; 312(Pt 1): 137169, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36402353

RESUMO

UV-assisted advanced oxidation processes (AOPs) are widely used and studied in degradation of bisphenol A (BPA). However, detailed information on their radical chemistry and degradation mechanisms is still lacking. In this study, degradation of BPA was comparatively evaluated to investigate the radical mechanisms, products and the toxicity variation in UV/chlorine and UV/H2O2 processes. In comparison with UV/H2O2, UV/chlorine had a higher BPA degradation efficiency and higher pH-dependency due to chlorination and the synergy of •OH and RCS. The •OH and Cl• played a pivotal role as the primary radicals in BPA degradation by UV/chlorine process at all pH investigated (6-8). The relative contributions of the secondary radicals ClO• gradually decreased with a variation of pH from 6 to 8 in this process. Presence of HCO3─ and HA inhibited BPA degradation to different extents in UV/chlorine process, while the effect of Cl─ could be neglected. According to the identified transformation products, chlorination (major), hydroxylation and breakage of the isopropylidene chain were BPA decomposition pathways in the UV/chlorine system. In the UV/H2O2 system, only hydroxylation (major) and breakage of the isopropylidene chain occurred. The toxicity analysis, based on the proposed degradation pathways, indicated that the generation of chlorinated products in the UV/chlorine system led to a higher toxicity of the resulting mixture than in the UV/H2O2 system. Although UV/chlorine has an excellent BPA degradation effect and it is cost-effective, the possible environmental risk should be carefully considered when UV/chlorine system is used to remove BPA in real waters.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cloro/química , Purificação da Água/métodos , Peróxido de Hidrogênio , Poluentes Químicos da Água/análise , Raios Ultravioleta , Cinética , Cloretos , Oxirredução
8.
Environ Pollut ; 313: 120042, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36044947

RESUMO

Exposure to toxic metals from nonferrous metal(loid) smelter soils can pose serious threats to the surrounding ecosystems, crop production, and human health. Bioremediation using microorganisms is a promising strategy for treating metal(loid)-contaminated soils. Here, a native microbial consortium with sulfate-reducing function (SRB1) enriched from smelter soils can tolerate exposures to mixtures of heavy metal(loid)s (e.g., As and Pb) or various organic flotation reagents (e.g., ethylthionocarbamate). The addition of Fe2+ greatly increased As3+ immobilization compared to treatment without Fe2+, with the immobilization efficiencies of 81.0% and 58.9%, respectively. Scanning electronic microscopy-energy dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy confirmed that the As3+ immobilizing activity was related to the formation of arsenic sulfides (AsS, As4S4, and As2S3) and sorption/co-precipitation of pyrite (FeS2). High-throughput 16S rRNA gene sequencing of SRB1 suggests that members of Clostridium, Desulfosporosinus, and Desulfovibrio genera play an important role in maintaining and stabilizing As3+ immobilization activity. Metal(loid)s immobilizing activity of SRB1 was not observed at high and toxic total exposure concentrations (220-1181 mg As/kg or 63-222 mg Pb/kg). However, at lower concentrations, SRB1 treatment decreased bioavailable fractions of As (9.0%) and Pb (28.6%) compared to without treatment. Results indicate that enriched native SRB1 consortia exhibited metal(loid) transformation capacities under non-toxic concentrations of metal(loid)s for future bioremediation strategies to decrease mixed metal(loid)s exposure from smelter polluted soils.


Assuntos
Arsênio , Metais Pesados , Poluentes do Solo , Arsênio/análise , Ecossistema , Humanos , Chumbo , Metais Pesados/análise , Consórcios Microbianos , RNA Ribossômico 16S , Solo/química , Poluentes do Solo/análise , Sulfatos , Sulfetos
9.
Chemosphere ; 307(Pt 4): 135892, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35987264

RESUMO

In this study compound-specific isotope analysis (CSIA) has been used to explore the degradation mechanism of nano titanium dioxide (TiO2) catalyzes photodegradation of diethyl phthalate (DEP). TiO2 is a popular photosensitizer with potential in waste water treatment and application in advanced oxidation processes. The degradation process of DEP can be described with a first-order kinetics in the applied concentration ranges. The larger degradation rate constant has been found at neutral conditions. The 13C and 2H isotope fractionation associated with the nano TiO2 catalyzes photodegradation of DEP at pH 3, 7 and 11 yield normal isotope effects. In the TiO2/UV/DEP and TiO2/H2O2/UV/DEP systems, the correlation of 13C and 2H fractionation (Λ) were calculated to be 2.7 ± 0.2, 2.8 ± 0.2 at pH 3, 2.2 ± 0.4, 2.5 ± 0.2, 2.3 ± 0.6 at pH 7 and 2.6 ± 0.3, 2.2 ± 0.3, 2.7 ± 0.2 and 2.3 ± 0.3 at pH11, respectively. The dominant free radical species in studied systems were explored by combining free radical quenching method and electron paramagnetic resonance analysis. The hydroxyl radicals have been found as the main radical species at all pH conditions studied. Furthermore, the 13C and 2H fractionation suggested that the addition of •OH on the benzene ring of DEP is the main conversion pathway. Therefore, CSIA is a promising technology for the identification of reaction pathways of DEP for example in water treatment systems.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Benzeno/análise , Peróxido de Hidrogênio/química , Isótopos/análise , Fármacos Fotossensibilizantes , Ácidos Ftálicos , Raios Ultravioleta , Poluentes Químicos da Água/análise
10.
J Hazard Mater ; 423(Pt B): 127164, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34534803

RESUMO

Non-ferrous metal(loid)s in region with karst characteristic are highly diffusible, especially by runoff or atmospheric deposition. However, microbiota in response to the diffusing metal(loid)s is still to be understood. In this study, we focused on microbiota across metal(loid)s diffusion pathways around a non-ferrous smelting assembly. The microbial distribution and metal(loid)s-microbial interactions were analysed by 16S rRNA amplicon and multivariate statistical analysis. Although runoff and atmospheric deposition showed similar metal(loid)s diffusion contribution, different microbial compositions were revealed. The microbiota along the runoff transect (region3) was similar to those within the atmospheric deposition transect (region4), which significantly differed from those closer to the smelting assembly (region1 and region2; R2 = 0.3866, p = 0.001). Random forest model indicated the negative impacts of bioavailable metal(loid)s on microbial diversity. Proteobacteria was predominant in region1 while Actinobacteriota dominated in the other regions. Twenty abundant genera were identified in metal(loid)s rich area, such as sulfur metabolizer Sulfurifustis and metal resistant Acinetobacter. Interactions between the geochemical parameters and the dominant taxa indicated that the main drivers were Al, Sb, As and their bioavailable fractions and sulfate. This study provides understandings of microbiota patterns towards different metal(loid)s diffusion pathways around non-ferrous smelting assembly with karst characteristic.


Assuntos
Metaloides , Metais Pesados , Microbiota , Poluentes do Solo , Bactérias/genética , China , Monitoramento Ambiental , Metaloides/análise , Metais/análise , Metais Pesados/análise , RNA Ribossômico 16S/genética , Poluentes do Solo/análise
11.
Sci Total Environ ; 812: 152326, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34906578

RESUMO

Here we combined microcalorimetry, enzyme activity measurements, and characterization of metal form in order to evaluate the effect of metal(loid)s on the activity of microbial community inhabiting tailings area with high toxic metal(loid)s concentration. Chromium (Cr), nickel (Ni), copper (Cu) and manganese (Mn) were the main pollutants. The exchangeable fractions (bioavailability) of Cu, Ni and Mn were higher in the tailings sample (Site Z), indicating a higher environmental risk. The total heat Qtotal (17,726.87 J/g), peak power Ppeak (541.42 µW/g) and growth rate constant k (0.11 h-1) of Site Z were higher than that of the polluted soil around tailings (Site Y). Such observation may be explained by physiological changes within the microbial community in response to high levels of heavy metal stress, thereby increasing respiration and improving microbial activity. In contrast, enzyme activities and enzyme activities index (GmeA) of Site Z were lower than the Site Y, which is strongly influenced by changes on physical-chemical properties (TN and TOC) and the presence of Cr, Mn, and Ni. Correlation coefficient and principal component analysis (PCA) indicate that GmeA is significantly correlated (p < 0.05 or p < 0.01) with environmental factors (EC, TOC and TN), Mn and Ni concentration, Ni bioavailability, and peak time (Tpeak). Therefore, GmeA represents a potential biological indicator for reporting the pollution degree in tailings area. Our results provide a theoretical basis for the prevention and control of pollution in non-ferrous metal(loid) tailings area.


Assuntos
Metais Pesados , Microbiota , Poluentes do Solo , Cromo , Monitoramento Ambiental , Poluição Ambiental , Metais Pesados/análise , Níquel , Poluentes do Solo/análise
12.
Chemosphere ; 282: 130992, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34087556

RESUMO

Mining and smelting activities have introduced severe potentially toxic metals (PTMs) contamination into surrounding soil settings. Influences of PTMs on microbial diversity have been widely studied. However, variations of microbial communities, network structures and community functions in different levels of PTMs contaminated soils adjacent to mining and smelting aera are still poorly investigated. In this study, microbial communities of soils around different levels of PTMs contamination were comprehensively studied by 16S rRNA gene amplicons high-throughput sequencing. Microbial interactions and module functions were also exploited to ascertain the discrepancies of PTMs concentration levels on microbial ecological functions. Results indicated that the microbial community composition was significantly distinct attributed to the phylum Protebacteria (p = 0.002) dominating in soil with high level PTMs contents but Actinobacteria (p = 0.002) in low level of PTMs-contaminated soil. Microbial α diversity was not significantly influenced by different levels of PTMs contaminations. Microorganisms proactively responded to PTMs content levels by means of strengthening network complexities and modularities among microbe-microbe interactions. The functions of main network modules were predicted associating membrane transport, amino acid metabolism, energy metabolism and carbohydrate metabolism. The PTMs detoxification and anti-oxidation were significantly strengthened at the high level of PTMs contamination. The present study demonstrated that modification of microbial community by the adaptive adjustment of microbial compositions and strengthening their network complexity and modularity.


Assuntos
Metais Pesados , Microbiota , Poluentes do Solo , Metais Pesados/análise , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
13.
Environ Pollut ; 286: 117285, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33984773

RESUMO

Butyl Xanthate (BX) is a typical flotation reagent used to extract non-ferrous nickel ores, discharged into the surrounding environment of mining areas in large quantities. However, few studies have focused on the toxicity of combined pollution of BX and nickel (Ni) on aquatic plants, especially phytoplankton, the main producer of aquatic ecosystems. The toxicity and potential mechanism of single and combined pollution of BX and Ni at different concentrations (0-20 mg L-1) on typical freshwater algae (Chlorella pyrenoidosa) were studied. BX slightly stimulated the growth of C. pyrenoidosa on the first day, but Ni and Ni/BX mixture significantly inhibited it during incubation. Results showed that the inhibition rate (I) of the pollutants on the growth of C. pyrenoidosa followed the order: Ni/BX mixture > Ni > BX. The 96-h 20% effective inhibitory concentrations (96h-EC20) of Ni and BX on C. pyrenoidosa growth were 3.86 mg L-1 and 19.25 mg L-1, respectively, indicating C. pyrenoidosa was sensitive to pollutants. The content of total soluble protein (TSP) and chlorophyll a (Chl-a) changed significantly, which may be caused by the damage of pollutants to cell structures (cell membranes and chloroplasts). In addition, the I of pollutants on C. pyrenoidosa growth was related to dose, superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA). The increasement of reactive oxygen species (ROS), antioxidant enzymes (SOD and CAT), and MDA content, suggested C. pyrenoidosa suffered from oxidative stress, leading to lipid oxidation. These results will help to understand the toxicity mechanism of pollutants in typical mining areas and assess the environmental risks of pollutants to primary producers in aquatic ecosystems.


Assuntos
Chlorella , Poluentes Químicos da Água , Clorofila A , Ecossistema , Água Doce , Indicadores e Reagentes , Níquel/toxicidade , Superóxido Dismutase , Tionas , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
14.
Environ Sci Pollut Res Int ; 27(34): 42767-42777, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32720023

RESUMO

Currently, sustainable utilization, including recycling and valorization, is becoming increasingly popular in waste management. Black soldier fly larvae (BSFL) can convert the carbon (C) and nitrogen (N) from organic waste into biomass and improve properties of the substrate to reduce greenhouse gas and NH3 emissions. In this study, the recycling of C and N and the emissions of greenhouse gas and NH3 during BSFL bio-treatment of mixtures of pig manure and corncob were investigated under different C/N ratios. The results indicated that initial C/N ratios of feedstock are a crucial parameter affecting the biomass generation of larvae. The BSFL recycled approximately 4.17-6.61% of C and 17.45-23.73% of N from raw materials under different C/N ratios. Cumulative CO2, CH4, NH3, and N2O emissions at the different C/N ratios ranging from 15 to 35 were 107.92-151.68, 0.08-0.76, 0.14-1.17, and 0.91-1.18 mg kg-1, respectively. Compared with conventional composting, BSFL treatment could reduce the total greenhouse gas emissions by over 90%. The study showed that bio-treatment of mixtures of pig manure and corncob with a proper C/N ratio by BSFL could become an avenue to achieve higher nutrient recycling, which is an eco-friendly process.


Assuntos
Compostagem , Gases de Efeito Estufa , Simuliidae , Animais , Carbono , Esterco , Nitrogênio , Suínos
15.
J Environ Manage ; 260: 110066, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941627

RESUMO

Currently, sustainable utilisation, including recycling and valorisation, is becoming increasingly relevant in environmental management. The wastes bioconversion by the black soldier fly larva (BSFL) has two potential advantages: the larvae can convert the carbon and nitrogen in the biomass waste, and improve the properties of the substrate to reduce the loss of gaseous carbon and nitrogen. In the present study, the conversion rate of carbon, nitrogen and the emissions of greenhouse gases and NH3 during BSFL bio-treatment of food waste were investigated under different pH conditions. The results showed that the pH of the raw materials is a pivotal parameter affecting the process. The average wet weight of harvested BSFL was 13.26-95.28 mg/larva, with about 1.95-13.41% and 5.40-18.93% of recycled carbon and nitrogen from substrate at a pH from 3.0 to 11.0, respectively. Furthermore, pH is adversely correlated with CO2 emissions, but positively with NH3 emissions. Cumulative CO2, NH3, CH4 and N2O emissions at pH ranging from 3.0 to 11.0 were 88.15-161.11 g kg-1, 0.15-1.68 g kg-1, 0.19-2.62 mg kg-1 and 0.02-1.65 mg kg-1, respectively. Compared with the values in open composting, BSFL bio-treatment of food waste could lead greenhouse gas (especially CH4 and N2O) and NH3 emissions to decrease. Therefore, a higher pH value of the substrate can increase the larval output and help the mitigation of greenhouse gas emissions.


Assuntos
Gases de Efeito Estufa , Eliminação de Resíduos , Simuliidae , Animais , Carbono , Dióxido de Carbono , Alimentos , Metano , Nitrogênio
16.
Sci Total Environ ; 697: 133840, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31487598

RESUMO

The effects of different moisture contents on greenhouse gas (GHG) emissions from pig manure (PM) digested by black soldier fly larvae (BSFL) as well as the accompanying changes of nitrogen and carbon contents in gaseous emissions and residues were studied. A mixture of PM and corncob at the ratio of 2.2:1 was prepared with a moisture content of 45%. Then, distilled water was added to adjust the moisture contents of the mixture to 55%, 65%, 75% and 85%, respectively. The prepared mixtures were digested by BSFL for eight days. The results indicated that BSFL could reduce CH4, N2O and NH3 emissions respectively by 72.63-99.99%, 99.68%-99.91% and 82.30-89.92%, compared with conventional composting, while CO2 emissions increased potentially due to BSFL metabolism. With increasing moisture content, the cumulative CH4 emissions increased, while cumulative NH3 emissions peaked at 55% moisture content and then decreased. Interestingly, the tendency of total cumulative CO2 emissions was consistent with that of the total weight of BSFL. The total GHG emissions were about only 1% those from of traditional composting at the optimum moisture content (75%), which was the most favorable for the growth of BSFL. The nitrogen and carbon contents of BSFL content in all treatments accounted for 1.03%-12.67% and 0.25%-4.68% of the initial contents in the raw materials, respectively. Moreover, the residues retained 71.12%-90.58% carbon and 67.91%-80.39% nitrogen of the initial raw materials. Overall, our results suggest that BSFL treatment is an environment-friendly alternative for decreasing CH4, N2O and NH3 emissions as well as reducing global warming potential (GWP).


Assuntos
Compostagem , Gases de Efeito Estufa/análise , Esterco , Metano/análise , Simuliidae/fisiologia , Animais , Fertilizantes , Nitrogênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA