Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(10): e1011699, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37819951

RESUMO

The long slender bloodstream form Trypanosoma brucei maintains its essential mitochondrial membrane potential (ΔΨm) through the proton-pumping activity of the FoF1-ATP synthase operating in the reverse mode. The ATP that drives this hydrolytic reaction has long been thought to be generated by glycolysis and imported from the cytosol via an ATP/ADP carrier (AAC). Indeed, we demonstrate that AAC is the only carrier that can import ATP into the mitochondrial matrix to power the hydrolytic activity of the FoF1-ATP synthase. However, contrary to expectations, the deletion of AAC has no effect on parasite growth, virulence or levels of ΔΨm. This suggests that ATP is produced by substrate-level phosphorylation pathways in the mitochondrion. Therefore, we knocked out the succinyl-CoA synthetase (SCS) gene, a key mitochondrial enzyme that produces ATP through substrate-level phosphorylation in this parasite. Its absence resulted in changes to the metabolic landscape of the parasite, lowered virulence, and reduced mitochondrial ATP content. Strikingly, these SCS mutant parasites become more dependent on AAC as demonstrated by a 25-fold increase in their sensitivity to the AAC inhibitor, carboxyatractyloside. Since the parasites were able to adapt to the loss of SCS in culture, we also analyzed the more immediate phenotypes that manifest when SCS expression is rapidly suppressed by RNAi. Importantly, when performed under nutrient-limited conditions mimicking various host environments, SCS depletion strongly affected parasite growth and levels of ΔΨm. In totality, the data establish that the long slender bloodstream form mitochondrion is capable of generating ATP via substrate-level phosphorylation pathways.


Assuntos
Trypanosoma brucei brucei , Trypanosoma brucei brucei/metabolismo , Fosforilação , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo
2.
Nat Commun ; 13(1): 5989, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220811

RESUMO

Mitochondrial ATP synthase forms stable dimers arranged into oligomeric assemblies that generate the inner-membrane curvature essential for efficient energy conversion. Here, we report cryo-EM structures of the intact ATP synthase dimer from Trypanosoma brucei in ten different rotational states. The model consists of 25 subunits, including nine lineage-specific, as well as 36 lipids. The rotary mechanism is influenced by the divergent peripheral stalk, conferring a greater conformational flexibility. Proton transfer in the lumenal half-channel occurs via a chain of five ordered water molecules. The dimerization interface is formed by subunit-g that is critical for interactions but not for the catalytic activity. Although overall dimer architecture varies among eukaryotes, we find that subunit-g together with subunit-e form an ancestral oligomerization motif, which is shared between the trypanosomal and mammalian lineages. Therefore, our data defines the subunit-g/e module as a structural component determining ATP synthase oligomeric assemblies.


Assuntos
ATPases Mitocondriais Próton-Translocadoras , Animais , Lipídeos , Mamíferos , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Subunidades Proteicas/metabolismo , Prótons , Água
4.
Cells ; 11(3)2022 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-35159187

RESUMO

Myxozoans are a diverse group of microscopic cnidarian parasites and some representatives are associated with important diseases in fish, in both marine and freshwater aquaculture systems. Research on myxozoans has been largely hampered by the inability to isolate myxozoan parasites from their host tissues. In this study, we developed and optimized a method to isolate the myxozoan proliferative stages of different size and cellularity from fish blood, using DEAE-cellulose ion exchange chromatography. We optimized several parameters and obtained 99-100% parasite purity, as well as high survival and infectivity. Using polyclonal pan-carp blood cell-specific antibodies, we further developed a rapid cytometric assay for quantification of the proliferative stages, not only in highly concentrated DEAE-C isolates but also in dilute conditions in full blood. Early developmental stages of myxozoans are key to parasite proliferation, establishment, and pathology in their hosts. The isolation of these stages not only opens new possibilities for in vivo and in vitro studies, but also for obtaining purified DNA and protein extracts for downstream analyses. Hence, we provide a long-desired tool that will advance the functional research into the mechanisms of host exploitation and immune stimulation/evasion in this group, which could contribute greatly to the development of therapeutic strategies against myxozoans.


Assuntos
Carpas , Doenças dos Peixes , Myxozoa , Animais , Anticorpos , Aquicultura , Genômica , Myxozoa/genética
5.
mSphere ; : e0032721, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34133204

RESUMO

Mitochondrial cristae are polymorphic invaginations of the inner membrane that are the fabric of cellular respiration. Both the mitochondrial contact site and cristae organization system (MICOS) and the F1FO-ATP synthase are vital for sculpting cristae by opposing membrane-bending forces. While MICOS promotes negative curvature at crista junctions, dimeric F1FO-ATP synthase is crucial for positive curvature at crista rims. Crosstalk between these two complexes has been observed in baker's yeast, the model organism of the Opisthokonta supergroup. Here, we report that this property is conserved in Trypanosoma brucei, a member of the Discoba clade that separated from the Opisthokonta ∼2 billion years ago. Specifically, one of the paralogs of the core MICOS subunit Mic10 interacts with dimeric F1FO-ATP synthase, whereas the other core Mic60 subunit has a counteractive effect on F1FO-ATP synthase oligomerization. This is evocative of the nature of MICOS-F1FO-ATP synthase crosstalk in yeast, which is remarkable given the diversification that these two complexes have undergone during almost 2 eons of independent evolution. Furthermore, we identified a highly diverged, putative homolog of subunit e, which is essential for the stability of F1FO-ATP synthase dimers in yeast. Just like subunit e, it is preferentially associated with dimers and interacts with Mic10, and its silencing results in severe defects to cristae and the disintegration of F1FO-ATP synthase dimers. Our findings indicate that crosstalk between MICOS and dimeric F1FO-ATP synthase is a fundamental property impacting crista shape throughout eukaryotes. IMPORTANCE Mitochondria have undergone profound diversification in separate lineages that have radiated since the last common ancestor of eukaryotes some eons ago. Most eukaryotes are unicellular protists, including etiological agents of infectious diseases, like Trypanosoma brucei. Thus, the study of a broad range of protists can reveal fundamental features shared by all eukaryotes and lineage-specific innovations. Here, we report that two different protein complexes, MICOS and F1FO-ATP synthase, known to affect mitochondrial architecture, undergo crosstalk in T. brucei, just as in baker's yeast. This is remarkable considering that these complexes have otherwise undergone many changes during their almost 2 billion years of independent evolution. Thus, this crosstalk is a fundamental property needed to maintain proper mitochondrial structure even if the constituent players considerably diverged.

6.
J Biol Chem ; 296: 100357, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33539923

RESUMO

Mitochondrial ATP synthase is a reversible nanomotor synthesizing or hydrolyzing ATP depending on the potential across the membrane in which it is embedded. In the unicellular parasite Trypanosoma brucei, the direction of the complex depends on the life cycle stage of this digenetic parasite: in the midgut of the tsetse fly vector (procyclic form), the FoF1-ATP synthase generates ATP by oxidative phosphorylation, whereas in the mammalian bloodstream form, this complex hydrolyzes ATP and maintains mitochondrial membrane potential (ΔΨm). The trypanosome FoF1-ATP synthase contains numerous lineage-specific subunits whose roles remain unknown. Here, we seek to elucidate the function of the lineage-specific protein Tb1, the largest membrane-bound subunit. In procyclic form cells, Tb1 silencing resulted in a decrease of FoF1-ATP synthase monomers and dimers, rerouting of mitochondrial electron transfer to the alternative oxidase, reduced growth rate and cellular ATP levels, and elevated ΔΨm and total cellular reactive oxygen species levels. In bloodstream form parasites, RNAi silencing of Tb1 by ∼90% resulted in decreased FoF1-ATPase monomers and dimers, but it had no apparent effect on growth. The same findings were obtained by silencing of the oligomycin sensitivity-conferring protein, a conserved subunit in T. brucei FoF1-ATP synthase. However, as expected, nearly complete Tb1 or oligomycin sensitivity-conferring protein suppression was lethal because of the inability to sustain ΔΨm. The diminishment of FoF1-ATPase complexes was further accompanied by a decreased ADP/ATP ratio and reduced oxygen consumption via the alternative oxidase. Our data illuminate the often diametrically opposed bioenergetic consequences of FoF1-ATP synthase loss in insect versus mammalian forms of the parasite.


Assuntos
Trifosfato de Adenosina/metabolismo , Ciclo Celular , Metabolismo Energético , Mitocôndrias/metabolismo , ATPases Translocadoras de Prótons/deficiência , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/metabolismo , Trifosfato de Adenosina/genética , Potencial da Membrana Mitocondrial , Mitocôndrias/genética , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/genética
7.
PLoS Biol ; 18(6): e3000741, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32520929

RESUMO

Mitochondrial metabolic remodeling is a hallmark of the Trypanosoma brucei digenetic life cycle because the insect stage utilizes a cost-effective oxidative phosphorylation (OxPhos) to generate ATP, while bloodstream cells switch to aerobic glycolysis. Due to difficulties in acquiring enough parasites from the tsetse fly vector, the dynamics of the parasite's metabolic rewiring in the vector have remained obscure. Here, we took advantage of in vitro-induced differentiation to follow changes at the RNA, protein, and metabolite levels. This multi-omics and cell-based profiling showed an immediate redirection of electron flow from the cytochrome-mediated pathway to an alternative oxidase (AOX), an increase in proline consumption, elevated activity of complex II, and certain tricarboxylic acid (TCA) cycle enzymes, which led to mitochondrial membrane hyperpolarization and increased reactive oxygen species (ROS) levels. Interestingly, these ROS molecules appear to act as signaling molecules driving developmental progression because ectopic expression of catalase, a ROS scavenger, halted the in vitro-induced differentiation. Our results provide insights into the mechanisms of the parasite's mitochondrial rewiring and reinforce the emerging concept that mitochondria act as signaling organelles through release of ROS to drive cellular differentiation.


Assuntos
Metabolômica , Mitocôndrias/metabolismo , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/metabolismo , Trifosfato de Adenosina/biossíntese , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Elétrons , Glucose/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Oxirredução , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Prolina/metabolismo , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Transcriptoma/genética , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/genética
8.
FEBS J ; 285(23): 4413-4423, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30288927

RESUMO

Hydrolysis of ATP by the mitochondrial F-ATPase is inhibited by a protein called IF1 . In the parasitic flagellate, Trypanosoma brucei, this protein, known as TbIF1 , is expressed exclusively in the procyclic stage, where the F-ATPase is synthesizing ATP. In the bloodstream stage, where TbIF1 is absent, the F-ATPase hydrolyzes ATP made by glycolysis and compensates for the absence of a proton pumping respiratory chain by translocating protons into the intermembrane space, thereby maintaining the essential mitochondrial membrane potential. We have defined regions and amino acid residues of TbIF1 that are required for its inhibitory activity by analyzing the binding of several modified recombinant inhibitors to F1 -ATPase isolated from the procyclic stage of T. brucei. Kinetic measurements revealed that the C-terminal portion of TbIF1 facilitates homodimerization, but it is not required for the inhibitory activity, similar to the bovine and yeast orthologs. However, in contrast to bovine IF1 , the inhibitory capacity of the C-terminally truncated TbIF1 diminishes with decreasing pH, similar to full length TbIF1 . This effect does not involve the dimerization of active dimers to form inactive tetramers. Over a wide pH range, the full length and C-terminally truncated TbIF1 form dimers and monomers, respectively. TbIF1 has no effect on bovine F1 -ATPase, and this difference in the mechanism of regulation of the F-ATPase between the host and the parasite could be exploited in the design of drugs to combat human and animal African trypanosomiases.


Assuntos
Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica , Proteínas/farmacologia , ATPases Translocadoras de Prótons/antagonistas & inibidores , Trypanosoma brucei brucei/enzimologia , Sequência de Aminoácidos , Animais , Bovinos , Inibidores Enzimáticos/química , Mutação , Proteínas/química , Proteínas/genética , Homologia de Sequência , Proteína Inibidora de ATPase
9.
Sci Rep ; 8(1): 5135, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29572512

RESUMO

Trypanosoma brucei is an extracellular parasite that alternates between an insect vector (procyclic form) and the bloodstream of a mammalian host (bloodstream form). While it was previously reported that mitochondrial release factor 1 (TbMrf1) is essential in cultured procyclic form cells, we demonstrate here that in vitro bloodstream form cells can tolerate the elimination of TbMrf1. Therefore, we explored if this discrepancy is due to the unique bioenergetics of the parasite since procyclic form cells rely on oxidative phosphorylation; whereas bloodstream form cells utilize glycolysis for ATP production and FoF1-ATPase to maintain the essential mitochondrial membrane potential. The observed disruption of intact bloodstream form FoF1-ATPases serves as a proxy to indicate that the translation of its mitochondrially encoded subunit A6 is impaired without TbMrf1. While these null mutants have a decreased mitochondrial membrane potential, they have adapted by increasing their dependence on the electrogenic contributions of the ADP/ATP carrier to maintain the mitochondrial membrane potential above the minimum threshold required for T. brucei viability in vitro. However, this inefficient compensatory mechanism results in avirulent mutants in mice. Finally, the depletion of the codon-independent release factor TbPth4 in the TbMrf1 knockouts further exacerbates the characterized mitchondrial phenotypes.


Assuntos
Adaptação Fisiológica , Estágios do Ciclo de Vida , Potencial da Membrana Mitocondrial/genética , Mitocôndrias , Proteínas Mitocondriais/genética , Proteínas de Protozoários/genética , Trypanosoma brucei brucei , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
10.
FEBS J ; 285(3): 614-628, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29247468

RESUMO

The F-ATPases (also called the F1 Fo -ATPases or ATP synthases) are multi-subunit membrane-bound molecular machines that produce ATP in bacteria and in eukaryotic mitochondria and chloroplasts. The structures and enzymic mechanisms of their F1 -catalytic domains are highly conserved in all species investigated hitherto. However, there is evidence that the F-ATPases from the group of protozoa known as Euglenozoa have novel features. Therefore, we have isolated pure and active F1 -ATPase from the euglenozoan parasite, Trypanosoma brucei, and characterized it. All of the usual eukaryotic subunits (α, ß, γ, δ, and ε) were present in the enzyme, and, in addition, two unique features were detected. First, each of the three α-subunits in the F1 -domain has been cleaved by proteolysis in vivo at two sites eight residues apart, producing two assembled fragments. Second, the T. brucei F1 -ATPase has an additional subunit, called p18, present in three copies per complex. Suppression of expression of p18 affected in vitro growth of both the insect and infectious mammalian forms of T. brucei. It also reduced the levels of monomeric and multimeric F-ATPase complexes and diminished the in vivo hydrolytic activity of the enzyme significantly. These observations imply that p18 plays a role in the assembly of the F1 domain. These unique features of the F1 -ATPase extend the list of special characteristics of the F-ATPase from T. brucei, and also, demonstrate that the architecture of the F1 -ATPase complex is not strictly conserved in eukaryotes.


Assuntos
Modelos Moleculares , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/enzimologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Biologia Computacional , Sequência Conservada , Estabilidade Enzimática , Hidrólise , Cinética , Potencial da Membrana Mitocondrial , Mapeamento de Peptídeos , Conformação Proteica , Multimerização Proteica , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , Proteólise , ATPases Translocadoras de Prótons/antagonistas & inibidores , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/isolamento & purificação , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas de Protozoários/isolamento & purificação , Interferência de RNA , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Trypanosoma brucei brucei/crescimento & desenvolvimento
11.
PLoS Negl Trop Dis ; 11(4): e0005552, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28414727

RESUMO

The mitochondrial (mt) FoF1-ATP synthase of the digenetic parasite, Trypanosoma brucei, generates ATP during the insect procyclic form (PF), but becomes a perpetual consumer of ATP in the mammalian bloodstream form (BF), which lacks a canonical respiratory chain. This unconventional dependence on FoF1-ATPase is required to maintain the essential mt membrane potential (Δψm). Normally, ATP hydrolysis by this rotary molecular motor is restricted to when eukaryotic cells experience sporadic hypoxic conditions, during which this compulsory function quickly depletes the cellular ATP pool. To protect against this cellular treason, the highly conserved inhibitory factor 1 (IF1) binds the enzyme in a manner that solely inhibits the hydrolytic activity. Intriguingly, we were able to identify the IF1 homolog in T. brucei (TbIF1), but determined that its expression in the mitochondrion is tightly regulated throughout the life cycle as it is only detected in PF cells. TbIF1 appears to primarily function as an emergency brake in PF cells, where it prevented the restoration of the Δψm by FoF1-ATPase when respiration was chemically inhibited. In vitro, TbIF1 overexpression specifically inhibits the hydrolytic activity but not the synthetic capability of the FoF1-ATP synthase in PF mitochondria. Furthermore, low µM amounts of recombinant TbIF1 achieve the same inhibition of total mt ATPase activity as the FoF1-ATPase specific inhibitors, azide and oligomycin. Therefore, even minimal ectopic expression of TbIF1 in BF cells proved lethal as the indispensable Δψm collapsed due to inhibited FoF1-ATPase. In summary, we provide evidence that T. brucei harbors a natural and potent unidirectional inhibitor of the vital FoF1-ATPase activity that can be exploited for future structure-based drug design.


Assuntos
Trifosfato de Adenosina/metabolismo , Inibidores Enzimáticos/metabolismo , Regulação da Expressão Gênica , ATPases Translocadoras de Prótons/metabolismo , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/metabolismo , Hidrólise , Trypanosoma brucei brucei/genética
12.
Int J Parasitol Drugs Drug Resist ; 6(1): 23-34, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27054061

RESUMO

Lipophilic bisphosphonium salts are among the most promising antiprotozoal leads currently under investigation. As part of their preclinical evaluation we here report on their mode of action against African trypanosomes, the etiological agents of sleeping sickness. The bisphosphonium compounds CD38 and AHI-9 exhibited rapid inhibition of Trypanosoma brucei growth, apparently the result of cell cycle arrest that blocked the replication of mitochondrial DNA, contained in the kinetoplast, thereby preventing the initiation of S-phase. Incubation with either compound led to a rapid reduction in mitochondrial membrane potential, and ATP levels decreased by approximately 50% within 1 h. Between 4 and 8 h, cellular calcium levels increased, consistent with release from the depolarized mitochondria. Within the mitochondria, the Succinate Dehydrogenase complex (SDH) was investigated as a target for bisphosphonium salts, but while its subunit 1 (SDH1) was present at low levels in the bloodstream form trypanosomes, the assembled complex was hardly detectable. RNAi knockdown of the SDH1 subunit produced no growth phenotype, either in bloodstream or in the procyclic (insect) forms and we conclude that in trypanosomes SDH is not the target for bisphosphonium salts. Instead, the compounds inhibited ATP production in intact mitochondria, as well as the purified F1 ATPase, to a level that was similar to 1 mM azide. Co-incubation with azide and bisphosphonium compounds did not inhibit ATPase activity more than either product alone. The results show that, in T. brucei, bisphosphonium compounds do not principally act on succinate dehydrogenase but on the mitochondrial FoF1 ATPase.


Assuntos
Mitocôndrias/efeitos dos fármacos , Compostos Organofosforados/farmacologia , ATPases Translocadoras de Prótons/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Azidas/farmacologia , Cálcio/metabolismo , Linhagem Celular , DNA Mitocondrial/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Compostos Organofosforados/química , Interferência de RNA , Succinato Desidrogenase/metabolismo , Trypanosoma brucei brucei/citologia , Trypanosoma brucei brucei/crescimento & desenvolvimento , Tripanossomíase Africana/parasitologia
13.
PLoS Pathog ; 11(2): e1004660, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25714685

RESUMO

In the infectious stage of Trypanosoma brucei, an important parasite of humans and livestock, the mitochondrial (mt) membrane potential (Δψm) is uniquely maintained by the ATP hydrolytic activity and subsequent proton pumping of the essential FoF1-ATPase. Intriguingly, this multiprotein complex contains several trypanosome-specific subunits of unknown function. Here, we demonstrate that one of the largest novel subunits, ATPaseTb2, is membrane-bound and localizes with monomeric and multimeric assemblies of the FoF1-ATPase. Moreover, RNAi silencing of ATPaseTb2 quickly leads to a significant decrease of the Δψm that manifests as a decreased growth phenotype, indicating that the FoF1-ATPase is impaired. To further explore the function of this protein, we employed a trypanosoma strain that lacks mtDNA (dyskinetoplastic, Dk) and thus subunit a, an essential component of the proton pore in the membrane Fo-moiety. These Dk cells generate the Δψm by combining the hydrolytic activity of the matrix-facing F1-ATPase and the electrogenic exchange of ATP4- for ADP3- by the ATP/ADP carrier (AAC). Surprisingly, in addition to the expected presence of F1-ATPase, the monomeric and multimeric FoF1-ATPase complexes were identified. In fact, the immunoprecipitation of a F1-ATPase subunit demonstrated that ATPaseTb2 was a component of these complexes. Furthermore, RNAi studies established that the membrane-bound ATPaseTb2 subunit is essential for maintaining normal growth and the Δψm of Dk cells. Thus, even in the absence of subunit a, a portion of the FoF1-ATPase is assembled in Dk cells.


Assuntos
ATPases Translocadoras de Prótons/fisiologia , Trypanosoma brucei brucei , Tripanossomíase Africana/sangue , Tripanossomíase Africana/parasitologia , Animais , Bovinos , Células Cultivadas , DNA Mitocondrial/genética , Humanos , Proteínas de Membrana/fisiologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Organismos Geneticamente Modificados , Subunidades Proteicas/fisiologia , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/patogenicidade , Trypanosoma brucei brucei/ultraestrutura
14.
Eukaryot Cell ; 14(3): 297-310, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25616281

RESUMO

The highly conserved ADP/ATP carrier (AAC) is a key energetic link between the mitochondrial (mt) and cytosolic compartments of all aerobic eukaryotic cells, as it exchanges the ATP generated inside the organelle for the cytosolic ADP. Trypanosoma brucei, a parasitic protist of medical and veterinary importance, possesses a single functional AAC protein (TbAAC) that is related to the human and yeast ADP/ATP carriers. However, unlike previous studies performed with these model organisms, this study showed that TbAAC is most likely not a stable component of either the respiratory supercomplex III+IV or the ATP synthasome but rather functions as a physically separate entity in this highly diverged eukaryote. Therefore, TbAAC RNA interference (RNAi) ablation in the insect stage of T. brucei does not impair the activity or arrangement of the respiratory chain complexes. Nevertheless, RNAi silencing of TbAAC caused a severe growth defect that coincides with a significant reduction of mt ATP synthesis by both substrate and oxidative phosphorylation. Furthermore, TbAAC downregulation resulted in a decreased level of cytosolic ATP, a higher mt membrane potential, an elevated amount of reactive oxygen species, and a reduced consumption of oxygen in the mitochondria. Interestingly, while TbAAC has previously been demonstrated to serve as the sole ADP/ATP carrier for ADP influx into the mitochondria, our data suggest that a second carrier for ATP influx may be present and active in the T. brucei mitochondrion. Overall, this study provides more insight into the delicate balance of the functional relationship between TbAAC and the oxidative phosphorylation (OXPHOS) pathway in an early diverged eukaryote.


Assuntos
Evolução Molecular , Translocases Mitocondriais de ADP e ATP/metabolismo , Fosforilação Oxidativa , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/genética , Translocases Mitocondriais de ADP e ATP/química , Translocases Mitocondriais de ADP e ATP/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/metabolismo
15.
Mol Biochem Parasitol ; 184(2): 90-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22569586

RESUMO

The Trypanosoma brucei cytochrome c oxidase (respiratory complex IV) is a very divergent complex containing a surprisingly high number of trypanosomatid-specific subunits with unknown function. To gain insight into the functional organization of this large protein complex, the expression of three novel subunits (TbCOX VII, TbCOX X and TbCOX 6080) were down-regulated by RNA interference. We demonstrate that all three subunits are important for the proper function of complex IV and the growth of the procyclic stage of T. brucei. These phenotypes were manifested by the structural instability of the complex when these indispensible subunits were repressed. Furthermore, the impairment of cytochrome c oxidase resulted in other severe mitochondrial phenotypes, such as a decreased mitochondrial membrane potential, reduced ATP production via oxidative phoshorylation and redirection of oxygen consumption to the trypanosome-specific alternative oxidase, TAO. Interestingly, the inspected subunits revealed some disparate phenotypes, particularly regarding the activity of cytochrome c reductase (respiratory complex III). While the activity of complex III was down-regulated in RNAi induced cells for TbCOX X and TbCOX 6080, the TbCOX VII silenced cell line actually exhibited higher levels of complex III activity and elevated levels of ROS formation. This result suggests that the examined subunits may have different functional roles within complex IV of T. brucei, perhaps involving the ability to communicate between sequential enzymes in the respiratory chain. In summary, by characterizing the function of three hypothetical components of complex IV, we are able to assign these proteins as genuine and indispensable subunits of the procyclic T. brucei cytochrome c oxidase, an essential component of the respiratory chain in these evolutionary ancestral and medically important parasites.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/genética , Fenótipo , Subunidades Proteicas/genética , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/enzimologia , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Fontes Geradoras de Energia , Estabilidade Enzimática , Técnicas de Silenciamento de Genes , Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Oxirredução , Consumo de Oxigênio , Estrutura Quaternária de Proteína , Subunidades Proteicas/metabolismo , Proteínas de Protozoários/metabolismo , Interferência de RNA , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crescimento & desenvolvimento
16.
PLoS One ; 7(3): e33405, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22438925

RESUMO

BACKGROUND: Most mitochondrial mRNAs in Trypanosoma brucei require RNA editing for maturation and translation. The edited RNAs primarily encode proteins of the oxidative phosphorylation system. These parasites undergo extensive changes in energy metabolism between the insect and bloodstream stages which are mirrored by alterations in RNA editing. Two U-specific exonucleases, KREX1 and KREX2, are both present in protein complexes (editosomes) that catalyze RNA editing but the relative roles of each protein are not known. METHODOLOGY/PRINCIPAL FINDINGS: The requirement for KREX2 for RNA editing in vivo was assessed in both procyclic (insect) and bloodstream form parasites by methods that use homologous recombination for gene elimination. These studies resulted in null mutant cells in which both alleles were eliminated. The viability of these cells demonstrates that KREX2 is not essential in either life cycle stage, despite certain defects in RNA editing in vivo. Furthermore, editosomes isolated from KREX2 null cells require KREX1 for in vitro U-specific exonuclease activity. CONCLUSIONS: KREX2 is a U-specific exonuclease that is dispensable for RNA editing in vivo in T. brucei BFs and PFs. This result suggests that the U deletion activity, which is required for RNA editing, is primarily mediated in vivo by KREX1 which is normally found associated with only one type of editosome. The retention of the KREX2 gene implies a non-essential role or a role that is essential in other life cycle stages or conditions.


Assuntos
Exonucleases/metabolismo , Proteínas de Protozoários/metabolismo , Edição de RNA , Trypanosoma brucei brucei/metabolismo , Animais , Exonucleases/antagonistas & inibidores , Exonucleases/genética , Deleção de Genes , Técnicas de Silenciamento de Genes , Genes de Protozoários , Camundongos , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Edição de RNA/genética , Edição de RNA/fisiologia , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crescimento & desenvolvimento
17.
Eukaryot Cell ; 11(2): 183-93, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22158713

RESUMO

The presence of mitochondrial respiratory complex I in the pathogenic bloodstream stages of Trypanosoma brucei has been vigorously debated: increased expression of mitochondrially encoded functional complex I mRNAs is countered by low levels of enzymatic activity that show marginal inhibition by the specific inhibitor rotenone. We now show that epitope-tagged versions of multiple complex I subunits assemble into α and ß subcomplexes in the bloodstream stage and that these subcomplexes require the mitochondrial genome for their assembly. Despite the presence of these large (740- and 855-kDa) multisubunit complexes, the electron transport activity of complex I is not essential under experimental conditions since null mutants of two core genes (NUBM and NUKM) showed no growth defect in vitro or in mouse infection. Furthermore, the null mutants showed no decrease in NADH:ubiquinone oxidoreductase activity, suggesting that the observed activity is not contributed by complex I. This work conclusively shows that despite the synthesis and assembly of subunit proteins, the enzymatic function of the largest respiratory complex is neither significant nor important in the bloodstream stage. This situation appears to be in striking contrast to that for the other respiratory complexes in this parasite, where physical presence in a life-cycle stage always indicates functional significance.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/enzimologia , Trypanosoma brucei brucei/enzimologia , Animais , Transporte de Elétrons , Fluorimunoensaio , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Oxirredução , Ratos , Transfecção , Trypanosoma brucei brucei/metabolismo
18.
RNA ; 15(5): 947-57, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19318463

RESUMO

Mitochondrial RNAs in trypanosomes are edited by the insertion and deletion of uridine (U) nucleotides to form translatable mRNAs. Editing is catalyzed by three distinct editosomes that contain two related U-specific exonucleases (exoUases), KREX1 and KREX2, with the former present exclusively in KREN1 editosomes and the latter present in all editosomes. We show here that repression of KREX1 expression leads to a concomitant reduction of KREN1 in approximately 20S editosomes, whereas KREX2 repression results in reductions of KREPA2 and KREL1 in approximately 20S editosomes. Knockdown of KREX1 results in reduced cell viability, reduction of some edited RNA in vivo, and a significant reduction in deletion but not insertion endonuclease activity in vitro. In contrast, KREX2 knockdown does not affect cell growth or editing in vivo but results in modest reductions of both insertion and deletion endonuclease activities and a significant reduction of U removal in vitro. Simultaneous knockdown of both proteins leads to a more severe inhibition of cell growth and editing in vivo and an additive effect on endonuclease cleavage in vitro. Taken together, these results indicate that both KREX1 and KREX2 are important for retention of other proteins in editosomes, and suggest that the reduction in cell viability upon KREX1 knockdown is likely a consequence of KREN1 loss. Furthermore, although KREX2 appears dispensable for cell growth, the increased inhibition of editing and parasite viability upon knockdown of both KREX1 and KREX2 together suggests that both proteins have roles in editing.


Assuntos
Exonucleases/metabolismo , Edição de RNA , Trypanosoma brucei brucei/enzimologia , Animais , Técnicas de Silenciamento de Genes , Interferência de RNA , Trypanosoma brucei brucei/metabolismo , Uridina/metabolismo
19.
Mol Cell ; 20(3): 403-12, 2005 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-16285922

RESUMO

RNA editing in Trypanosoma brucei inserts and deletes uridines in mitochondrial mRNAs by a series of enzymatic steps that are catalyzed by a multiprotein complex, the editosome. KREPB1 and two related editosome proteins KREPB2 and KREPB3 contain motifs that suggest endonuclease and RNA/protein interaction functions. Repression of KREPB1 expression in procyclic forms by RNAi inhibited growth, in vivo editing, and in vitro endoribonucleolytic cleavage of deletion substrates. However, cleavage of insertion substrates and the exoUase, TUTase, and ligase catalytic activities of editing were retained by 20S editosomes. Repression of expression of an ectopic KREPB1 allele in bloodstream forms lacking both endogenous alleles or exclusive expression of KREPB1 with point mutations in the putative RNase III catalytic domain also blocked growth, in vivo editing, and abolished cleavage of deletion substrates, without affecting the other editing steps. These data indicate that KREPB1 is an endoribonuclease that is specific for RNA editing deletion sites.


Assuntos
Sequência de Aminoácidos/genética , Endorribonucleases/metabolismo , Mitocôndrias/metabolismo , Proteínas de Protozoários/metabolismo , Edição de RNA/fisiologia , Deleção de Sequência/genética , Trypanosoma brucei brucei/fisiologia , Animais , Endorribonucleases/genética , Mitocôndrias/genética , Estrutura Terciária de Proteína , Proteínas de Protozoários/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo
20.
Mol Cell ; 11(6): 1525-36, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12820966

RESUMO

RNA editing produces mature trypanosome mitochondrial mRNAs by uridylate (U) insertion and deletion. In insertion editing, Us are added to the pre-mRNA by a 3' terminal uridylyl transferase (TUTase) activity. We report the identification of a TUTase activity that copurifies with in vitro editing and is catalyzed by the integral editosome protein TbMP57. TbMP57 catalyzes the addition of primarily a single U to single-stranded (ss) RNA and adds the number of Us specified by a guide RNA to insertion editing-like substrates. TbMP57 is distinct from a previously identified TUTase that adds many Us to ssRNA and which we find is neither a stable editosome component nor does it add Us to editing-like substrates. Recombinant TbMP57 specifically interacts with the editosome protein TbMP81, and this interaction enhances the TUTase activity. These results suggest that TbMP57 catalyzes U addition to pre-mRNA during editing.


Assuntos
Mitocôndrias/enzimologia , Proteínas de Protozoários , Trypanosoma brucei brucei/enzimologia , UDPglucose-Hexose-1-Fosfato Uridiltransferase/isolamento & purificação , UDPglucose-Hexose-1-Fosfato Uridiltransferase/metabolismo , Animais , Catálise , Cromatografia em Agarose , Cromatografia em Gel , Cromatografia por Troca Iônica , Mitocôndrias/química , Dados de Sequência Molecular , Peso Molecular , Estrutura Terciária de Proteína , RNA/genética , RNA/metabolismo , Edição de RNA , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas/metabolismo , Especificidade por Substrato , Trypanosoma brucei brucei/citologia , Trypanosoma brucei brucei/genética , UDPglucose-Hexose-1-Fosfato Uridiltransferase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA