Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38003673

RESUMO

Amphipathic perylene derivatives are broad-spectrum antivirals against enveloped viruses that act as fusion inhibitors in a light-dependent manner. The compounds target the lipid bilayer of the viral envelope using the lipophilic perylene moiety and photogenerating singlet oxygen, thereby causing damage to unsaturated lipids. Previous studies show that variation of the polar part of the molecule is important for antiviral activity. Here, we report modification of the lipophilic part of the molecule, perylene, by the introduction of 4-, 8-, and 12-carbon alkyls into position 9(10) of the perylene residue. Using Friedel-Crafts acylation and Wolff-Kishner reduction, three 3-acetyl-9(10)-alkylperylenes were synthesized from perylene and used to prepare 9 nucleoside and 12 non-nucleoside amphipathic derivatives. These compounds were characterized as fluorophores and singlet oxygen generators, as well as tested as antivirals against herpes virus-1 (HSV-1) and vesicular stomatitis virus (VSV), both known for causing superficial skin/mucosa lesions and thus serving as suitable candidates for photodynamic therapy. The results suggest that derivatives with a short alkyl chain (butyl) have strong antiviral activity, whereas the introduction of longer alkyl substituents (n = 8 and 12) to the perylenyethynyl scaffold results in a dramatic reduction of antiviral activity. This phenomenon is likely attributable to the increased lipophilicity of the compounds and their ability to form insoluble aggregates. Moreover, molecular dynamic studies revealed that alkylated perylene derivatives are predominately located closer to the middle of the bilayer compared to non-alkylated derivatives. The predicted probability of superficial positioning correlated with antiviral activity, suggesting that singlet oxygen generation is achieved in the subsurface layer of the membrane, where the perylene group is more accessible to dissolved oxygen.


Assuntos
Herpesvirus Humano 1 , Perileno , Fotoquimioterapia , Perileno/farmacologia , Oxigênio Singlete , Antivirais/farmacologia , Antivirais/química , Fármacos Fotossensibilizantes/farmacologia
2.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674846

RESUMO

To date, a number of lantibiotics have been shown to use lipid II-a highly conserved peptidoglycan precursor in the cytoplasmic membrane of bacteria-as their molecular target. The α-component (Lchα) of the two-component lantibiotic lichenicidin, previously isolated from the Bacillus licheniformis VK21 strain, seems to contain two putative lipid II binding sites in its N-terminal and C-terminal domains. Using NMR spectroscopy in DPC micelles, we obtained convincing evidence that the C-terminal mersacidin-like site is involved in the interaction with lipid II. These data were confirmed by the MD simulations. The contact area of lipid II includes pyrophosphate and disaccharide residues along with the first isoprene units of bactoprenol. MD also showed the potential for the formation of a stable N-terminal nisin-like complex; however, the conditions necessary for its implementation in vitro remain unknown. Overall, our results clarify the picture of two component lantibiotics mechanism of antimicrobial action.


Assuntos
Antibacterianos , Bacteriocinas , Antibacterianos/química , Peptidoglicano/metabolismo , Bacteriocinas/química , Uridina Difosfato Ácido N-Acetilmurâmico/química , Uridina Difosfato Ácido N-Acetilmurâmico/metabolismo
3.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36499114

RESUMO

S-acylation is a post-translational linkage of long chain fatty acids to cysteines, playing a key role in normal physiology and disease. In human cells, the reaction is catalyzed by a family of 23 membrane DHHC-acyltransferases (carrying an Asp-His-His-Cys catalytic motif) in two stages: (1) acyl-CoA-mediated autoacylation of the enzyme; and (2) further transfer of the acyl chain to a protein substrate. Despite the availability of a 3D-structure of human acyltransferase (hDHHC20), the molecular aspects of lipid selectivity of DHHC-acyltransferases remain unclear. In this paper, using molecular dynamics (MD) simulations, we studied membrane-bound hDHHC20 right before the acylation by C12-, C14-, C16-, C18-, and C20-CoA substrates. We found that: (1) regardless of the chain length, its terminal methyl group always reaches the "ceiling" of the enzyme's cavity; (2) only for C16, an optimal "reactivity" (assessed by a simple geometric criterion) permits the autoacylation; (3) in MD, some key interactions between an acyl-CoA and a protein differ from those in the reference crystal structure of the C16-CoA-hDHHS20 mutant complex (probably, because this structure corresponds to a non-native dimer). These features of specific recognition of full-size acyl-CoA substrates support our previous hypothesis of "geometric and physicochemical selectivity" derived for simplified acyl-CoA analogues.


Assuntos
Acil Coenzima A , Aciltransferases , Humanos , Acil Coenzima A/metabolismo , Acilação , Aciltransferases/metabolismo , Ácidos Graxos/metabolismo , Especificidade por Substrato
4.
Biomedicines ; 9(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34829878

RESUMO

The molecular chaperone GroEL is designed to promote protein folding and prevent aggregation. However, the interaction between GroEL and the prion protein, PrPC, could lead to pathogenic transformation of the latter to the aggregation-prone PrPSc form. Here, the molecular basis of the interactions in the GroEL-PrP complex is studied with cryo-EM and molecular dynamics approaches. The obtained cryo-EM structure shows PrP to be bound to several subunits of GroEL at the level of their apical domains. According to MD simulations, the disordered N-domain of PrP forms much more intermolecular contacts with GroEL. Upon binding to the GroEL, the N-domain of PrP begins to form short helices, while the C-domain of PrP exhibits a tendency to unfold its α2-helix. In the absence of the nucleotides in the system, these processes are manifested at the hundred nanoseconds to microsecond timescale.

5.
Sci Rep ; 11(1): 18241, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521893

RESUMO

The GroEL-GroES chaperonin complex is a bacterial protein folding system, functioning in an ATP-dependent manner. Upon ATP binding and hydrolysis, it undergoes multiple stages linked to substrate protein binding, folding and release. Structural methods helped to reveal several conformational states and provide more information about the chaperonin functional cycle. Here, using cryo-EM we resolved two nucleotide-bound structures of the bullet-shaped GroEL-GroES1 complex at 3.4 Å resolution. The main difference between them is the relative orientation of their apical domains. Both structures contain nucleotides in cis and trans GroEL rings; in contrast to previously reported bullet-shaped complexes where nucleotides were only present in the cis ring. Our results suggest that the bound nucleotides correspond to ADP, and that such a state appears at low ATP:ADP ratios.


Assuntos
Difosfato de Adenosina/química , Chaperonina 10/química , Chaperonina 60/química , Proteínas de Escherichia coli/química , Difosfato de Adenosina/metabolismo , Sítios de Ligação , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Microscopia Crioeletrônica , Proteínas de Escherichia coli/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA