Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nutrients ; 16(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474734

RESUMO

Bone represents a metabolically active tissue subject to continuous remodeling orchestrated by the dynamic interplay between osteoblasts and osteoclasts. These cellular processes are modulated by a complex interplay of biochemical and mechanical factors, which are instrumental in assessing bone remodeling. This comprehensive evaluation aids in detecting disorders arising from imbalances between bone formation and reabsorption. Osteoporosis, characterized by a reduction in bone mass and strength leading to heightened bone fragility and susceptibility to fractures, is one of the more prevalent chronic diseases. Some epidemiological studies, especially in patients with chronic kidney disease (CKD), have identified an association between osteoporosis and vascular calcification. Notably, low bone mineral density has been linked to an increased incidence of aortic calcification, with shared molecules, mechanisms, and pathways between the two processes. Certain molecules emerging from these shared pathways can serve as biomarkers for bone and mineral metabolism. Detecting and evaluating these alterations early is crucial, requiring the identification of biomarkers that are reliable for early intervention. While traditional biomarkers for bone remodeling and vascular calcification exist, they suffer from limitations such as low specificity, low sensitivity, and conflicting results across studies. In response, efforts are underway to explore new, more specific biomarkers that can detect alterations at earlier stages. The aim of this review is to comprehensively examine some of the emerging biomarkers in mineral metabolism and their correlation with bone mineral density, fracture risk, and vascular calcification as well as their potential use in clinical practice.


Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica , Fraturas Ósseas , Osteoporose , Insuficiência Renal Crônica , Calcificação Vascular , Humanos , Distúrbio Mineral e Ósseo na Doença Renal Crônica/complicações , Osteoporose/etiologia , Densidade Óssea/fisiologia , Insuficiência Renal Crônica/complicações , Fraturas Ósseas/etiologia , Calcificação Vascular/complicações , Biomarcadores , Minerais
2.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339121

RESUMO

Shortly after the discovery of Klotho, interest grew in its potential role in chronic kidney disease (CKD). There are three isoforms of the Klotho protein: αKlotho, ßKlotho and γKlotho. This review will focus on αKlotho due to its relevance as a biomarker in CKD. αKlotho is synthesized mainly in the kidneys, but it can be released into the bloodstream and urine as soluble Klotho (sKlotho), which undertakes systemic actions, independently or in combination with FGF23. It is usually accepted that sKlotho levels are reduced early in CKD and that lower levels of sKlotho might be associated with the main chronic kidney disease-mineral bone disorders (CKD-MBDs): cardiovascular and bone disease. However, as results are inconsistent, the applicability of sKlotho as a CKD-MBD biomarker is still a matter of controversy. Much of the inconsistency can be explained due to low sample numbers, the low quality of clinical studies, the lack of standardized assays to assess sKlotho and a lack of consensus on sample processing, especially in urine. In recent decades, because of our longer life expectancies, the prevalence of accelerated-ageing diseases, such as CKD, has increased. Exercise, social interaction and caloric restriction are considered key factors for healthy ageing. While exercise and social interaction seem to be related to higher serum sKlotho levels, it is not clear whether serum sKlotho might be influenced by caloric restriction. This review focuses on the possible role of sKlotho as a biomarker in CKD-MBD, highlighting the difference between solid knowledge and areas requiring further research, including the role of sKlotho in healthy ageing.


Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica , Envelhecimento Saudável , Proteínas Klotho , Humanos , Biomarcadores , Distúrbio Mineral e Ósseo na Doença Renal Crônica/diagnóstico , Fatores de Crescimento de Fibroblastos , Glucuronidase , Envelhecimento Saudável/metabolismo , Minerais , Insuficiência Renal Crônica/complicações , Proteínas Klotho/sangue , Proteínas Klotho/metabolismo
3.
Biomolecules ; 13(9)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37759819

RESUMO

Vascular calcification (VC) is a common complication in patients with chronic kidney disease which increases their mortality. Although oxidative stress is involved in the onset and progression of this disorder, the specific role of some of the main redox regulators, such as catalase, the main scavenger of H2O2, remains unclear. In the present study, epigastric arteries of kidney transplant recipients, a rat model of VC, and an in vitro model of VC exhibiting catalase (Cts) overexpression were analysed. Pericalcified areas of human epigastric arteries had increased levels of catalase and cytoplasmic, rather than nuclear runt-related transcription factor 2 (RUNX2). In the rat model, advanced aortic VC concurred with lower levels of the H2O2-scavenger glutathione peroxidase 3 compared to controls. In an early model of calcification using vascular smooth muscle cells (VSMCs), Cts VSMCs showed the expected increase in total levels of RUNX2. However, Cts VMSCs also exhibited a lower percentage of the nucleus stained for RUNX2 in response to calcifying media. In this early model of VC, we did not observe a dysregulation of the mitochondrial redox state; instead, an increase in the general redox state was observed in the cytoplasm. These results highlight the complex role of antioxidant enzymes as catalase by regulation of RUNX2 subcellular location delaying the onset of VC.


Assuntos
Insuficiência Renal Crônica , Calcificação Vascular , Humanos , Animais , Ratos , Catalase , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Peróxido de Hidrogênio , Oxirredução
4.
Nutrients ; 15(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37447244

RESUMO

Phosphorus is a vital element for life found in most foods as a natural component, but it is also one of the most used preservatives added during food processing. High serum phosphorus contributes to develop vascular calcification in chronic kidney disease; however, it is not clear its effect in a population without kidney damage. The objective of this in vivo and in vitro study was to investigate the effect of high phosphorus exposure on the aortic and serum levels of miR-145 and its effect on vascular smooth muscle cell (VSMCs) changes towards less contractile phenotypes. The study was performed in aortas and serum from rats fed standard and high-phosphorus diets, and in VSMCs exposed to different concentrations of phosphorus. In addition, miR-145 silencing and overexpression experiments were carried out. In vivo results showed that in rats with normal renal function fed a high P diet, a significant increase in serum phosphorus was observed which was associated to a significant decrease in the aortic α-actin expression which paralleled the decrease in aortic and serum miR-145 levels, with no changes in the osteogenic markers. In vitro results using VSMCs corroborated the in vivo findings. High phosphorus first reduced miR-145, and afterwards α-actin expression. The miR-145 overexpression significantly increased α-actin expression and partially prevented the increase in calcium content. These results suggest that miR-145 could be an early biomarker of vascular calcification, which could give information about the initiation of the transdifferentiation process in VSMCs.


Assuntos
MicroRNAs , Calcificação Vascular , Ratos , Animais , Fósforo/metabolismo , Músculo Liso Vascular , Actinas/metabolismo , Transdiferenciação Celular , MicroRNAs/genética , MicroRNAs/metabolismo , Fenótipo , Calcificação Vascular/genética , Calcificação Vascular/metabolismo , Miócitos de Músculo Liso , Células Cultivadas
5.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37373455

RESUMO

Preclinical biomedical models are a fundamental tool to improve the knowledge and management of diseases, particularly in diabetes mellitus (DM) since, currently, the pathophysiological and molecular mechanisms involved in its development are not fully clarified, and there is no treatment to cure DM. This review will focus on the features, advantages and limitations of some of the most used DM models in rats, such as the spontaneous models: Bio-Breeding Diabetes-Prone (BB-DP) and LEW.1AR1-iddm, as representative models of type 1 DM (DM-1); the Zucker diabetic fatty (ZDF) and Goto-kakizaki (GK) rats, as representative models of type 2 DM (DM-2); and other models induced by surgical, dietary and pharmacological-alloxan and streptozotocin-procedures. Given the variety of DM models in rats, as well as the non-uniformity in the protocols and the absence of all the manifestation of the long-term multifactorial complications of DM in humans, the researchers must choose the one that best suits the final objectives of the study. These circumstances, added to the fact that most of the experimental research in the literature is focused on the study of the early phase of DM, makes it necessary to develop long-term studies closer to DM in humans. In this review, a recently published rat DM model induced by streptozotocin injection with chronic exogenous administration of insulin to reduce hyperglycaemia has also been included in an attempt to mimic the chronic phase of DM in humans.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Humanos , Ratos , Animais , Modelos Animais de Doenças , Estreptozocina , Ratos Zucker , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 2/complicações
6.
Nephrol Dial Transplant ; 38(11): 2589-2597, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37349949

RESUMO

BACKGROUND: Diabetic patients on haemodialysis have a higher risk of mortality than non-diabetic patients. The aim of this COSMOS (Current management of secondary hyperparathyroidism: a multicentre observational study) analysis was to assess whether bone and mineral laboratory values [calcium, phosphorus and parathyroid hormone (PTH)] contribute to this risk. METHODS: COSMOS is a multicentre, open-cohort, 3-year prospective study, which includes 6797 patients from 227 randomly selected dialysis centres in 20 European countries. The association between mortality and calcium, phosphate or PTH was assessed using Cox proportional hazard regression models using both penalized splines smoothing and categorization according to KDIGO guidelines. The effect modification of the association between the relative risk of mortality and serum calcium, phosphate or PTH by diabetes was assessed. RESULTS: There was a statistically significant effect modification of the association between the relative risk of mortality and serum PTH by diabetes (P = .011). The slope of the curve of the association between increasing values of PTH and relative risk of mortality was steeper for diabetic compared with non-diabetic patients, mainly for high levels of PTH. In addition, high serum PTH (>9 times the normal values) was significantly associated with a higher relative risk of mortality in diabetic patients but not in non-diabetic patients [1.53 (95% confidence interval 1.07-2.19) and 1.17 (95% confidence interval 0.91-1.52)]. No significant effect modification of the association between the relative risk of mortality and serum calcium or phosphate by diabetes was found (P = .2 and P = .059, respectively). CONCLUSION: The results show a different association of PTH with the relative risk of mortality in diabetic and non-diabetic patients. These findings could have relevant implications for the diagnosis and treatment of chronic kidney disease-mineral and bone disorders.


Assuntos
Cálcio , Diabetes Mellitus , Humanos , Cálcio da Dieta , Diabetes Mellitus/etiologia , Minerais , Hormônio Paratireóideo , Fosfatos , Estudos Prospectivos , Diálise Renal/efeitos adversos
7.
Nutrients ; 15(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37111038

RESUMO

Drugs providing antihypertensive and protective cardiovascular actions are of clinical interest in controlling cardiovascular events and slowing the progression of kidney disease. We studied the effect of a hybrid compound, GGN1231 (derived from losartan in which a powerful antioxidant was attached), on the prevention of cardiovascular damage, cardiac hypertrophy, and fibrosis in a rat model of severe chronic renal failure (CRF). CRF by a 7/8 nephrectomy was carried out in male Wistar rats fed with a diet rich in phosphorous (0.9%) and normal calcium (0.6%) for a period of 12 weeks until sacrifice. In week 8, rats were randomized in five groups receiving different drugs including dihydrocaffeic acid as antioxidant (Aox), losartan (Los), dihydrocaffeic acid+losartan (Aox+Los) and GGN1231 as follows: Group 1 (CRF+vehicle group), Group 2 (CRF+Aox group), Group 3 (CRF+Los group), Group 4 (CRF+Aox+Los group), and Group 5 (CRF+GGN1231 group). Group 5, the CRF+GGN1231 group, displayed reduced proteinuria, aortic TNF-α, blood pressure, LV wall thickness, diameter of the cardiomyocytes, ATR1, cardiac TNF-α and fibrosis, cardiac collagen I, and TGF-ß1 expression. A non-significant 20% reduction in the mortality was also observed. This study showed the possible advantages of GGN1231, which could help in the management of cardiovascular and inflammatory processes. Further research is needed to confirm and even expand the positive aspects of this compound.


Assuntos
Falência Renal Crônica , Losartan , Ratos , Masculino , Animais , Losartan/farmacologia , Losartan/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Fator de Necrose Tumoral alfa/farmacologia , Ratos Wistar , Modelos Teóricos , Fibrose , Rim/metabolismo
8.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36982322

RESUMO

Fibrosis plays an important role in the pathogenesis of long-term diabetic complications and contributes to the development of cardiac and renal dysfunction. The aim of this experimental study, performed in a long-term rat model, which resembles type 1 diabetes mellitus, was to investigate the role of soluble Klotho (sKlotho), advanced glycation end products (AGEs)/receptor for AGEs (RAGE), fibrotic Wnt/ß-catenin pathway, and pro-fibrotic pathways in kidney and heart. Diabetes was induced by streptozotocin. Glycaemia was maintained by insulin administration for 24 weeks. Serum and urine sKlotho, AGEs, soluble RAGE (sRAGE) and biochemical markers were studied. The levels of Klotho, RAGEs, ADAM10, markers of fibrosis (collagen deposition, fibronectin, TGF-ß1, and Wnt/ß-catenin pathway), hypertrophy of the kidney and/or heart were analysed. At the end of study, diabetic rats showed higher levels of urinary sKlotho, AGEs and sRAGE and lower serum sKlotho compared with controls without differences in the renal Klotho expression. A significant positive correlation was found between urinary sKlotho and AGEs and urinary albumin/creatinine ratio (uACR). Fibrosis and RAGE levels were significantly higher in the heart without differences in the kidney of diabetic rats compared to controls. The results also suggest the increase in sKlotho and sRAGE excretion may be due to polyuria in the diabetic rats.


Assuntos
Diabetes Mellitus Experimental , Nefropatias , Ratos , Animais , beta Catenina , Receptor para Produtos Finais de Glicação Avançada , Fibrose , Produtos Finais de Glicação Avançada
9.
Nutrients ; 15(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36986200

RESUMO

This study was designed to investigate the controversy on the potential role of sKlotho as an early biomarker in Chronic Kidney Disease-Mineral Bone Disorder (CKD-MBD), to assess whether sKlotho is a reliable marker of kidney α-Klotho, to deepen the effects of sKlotho on vascular smooth muscle cells (VSMCs) osteogenic differentiation and to evaluate the role of autophagy in this process. Experimental studies were conducted in CKD mice fed a normal phosphorus (CKD+NP) or high phosphorus (CKD+HP) diet for 14 weeks. The patients' study was performed in CKD stages 2-5 and in vitro studies which used VSMCs exposed to non-calcifying medium or calcifying medium with or without sKlotho. The CKD experimental model showed that the CKD+HP group reached the highest serum PTH, P and FGF23 levels, but the lowest serum and urinary sKlotho levels. In addition, a positive correlation between serum sKlotho and kidney α-Klotho was found. CKD mice showed aortic osteogenic differentiation, together with increased autophagy. The human CKD study showed that the decline in serum sKlotho is previous to the rise in FGF23. In addition, both serum sKlotho and FGF23 levels correlated with kidney function. Finally, in VSMCs, the addition of sKlotho prevented osteogenic differentiation and induced autophagy. It can be concluded that serum sKlotho was the earliest CKD-MBD biomarker, a reliable indicator of kidney α-Klotho and that might protect against osteogenic differentiation by increasing autophagy. Nevertheless, further studies are needed to investigate the mechanisms of this possible protective effect.


Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica , Insuficiência Renal Crônica , Humanos , Camundongos , Animais , Proteínas Klotho , Glucuronidase , Osteogênese , Fatores de Crescimento de Fibroblastos , Rim , Fósforo , Minerais , Biomarcadores
10.
Nephrol Dial Transplant ; 38(7): 1729-1740, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36722155

RESUMO

INTRODUCTION: MicroRNAs (miRs) regulate vascular calcification (VC), and their quantification may contribute to suspicion of the presence of VC. METHODS: The study was performed in four phases. Phase 1: miRs sequencing of rat calcified and non-calcified aortas. Phase 2: miRs with the highest rate of change, plus miR-145 [the most abundant miR in vascular smooth muscle cells (VSMCs)], were validated in aortas and serum from rats with and without VC. Phase 3: the selected miRs were analyzed in epigastric arteries from kidney donors and recipients, and serum samples from general population. Phase 4: VSMCs were exposed to different phosphorus concentrations, and miR-145 and miR-486 were overexpressed to investigate their role in VC. RESULTS: miR-145, miR-122-5p, miR-486 and miR-598-3p decreased in the rat calcified aortas, but only miR-145 and miR-486 were detected in serum. In human epigastric arteries, miR-145 and miR-486 were lower in kidney transplant recipients compared with donors. Both miRs inversely correlated with arterial calcium content and with VC (Kauppila index). In the general population, the severe VC was associated with the lowest serum levels of both miRs. The receiver operating characteristic curve showed that serum miR-145 was a good biomarker of VC. In VSMCs exposed to high phosphorus, calcium content, osteogenic markers (Runx2 and Osterix) increased, and the contractile marker (α-actin), miR-145 and miR-486 decreased. Overexpression of miR-145, and to a lesser extent miR-486, prevented the increase in calcium content induced by high phosphorus, the osteogenic differentiation and the loss of the contractile phenotype. CONCLUSION: miR-145 and miR-486 regulate the osteogenic differentiation of VSMCs, and their quantification in serum could serve as a marker of VC.


Assuntos
MicroRNAs , Calcificação Vascular , Animais , Humanos , Ratos , Biomarcadores , Cálcio , MicroRNAs/genética , Músculo Liso Vascular , Miócitos de Músculo Liso , Osteogênese/genética , Fósforo , Calcificação Vascular/genética
11.
Nutrients ; 14(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35807767

RESUMO

In chronic kidney disease, systemic inflammation and high serum phosphate (P) promote the de-differentiation of vascular smooth muscle cells (VSMC) to osteoblast-like cells, increasing the propensity for medial calcification and cardiovascular mortality. Vascular microRNA-145 (miR-145) content is essential to maintain VSMC contractile phenotype. Because vitamin D induces aortic miR-145, uremia and high serum P reduce it and miR-145 directly targets osteogenic osterix in osteoblasts, this study evaluated a potential causal link between vascular miR-145 reductions and osterix-driven osteogenic differentiation and its counter-regulation by vitamin D. Studies in aortic rings from normal rats and in the rat aortic VSMC line A7r5 exposed to calcifying conditions corroborated that miR-145 reductions were associated with decreases in contractile markers and increases in osteogenic differentiation and calcium (Ca) deposition. Furthermore, miR-145 silencing enhanced Ca deposition in A7r5 cells exposed to calcifying conditions, while miR-145 overexpression attenuated it, partly through increasing α-actin levels and reducing osterix-driven osteogenic differentiation. In mice, 14 weeks after the induction of renal mass reduction, both aortic miR-145 and α-actin mRNA decreased by 80% without significant elevations in osterix or Ca deposition. Vitamin D treatment from week 8 to 14 fully prevented the reductions in aortic miR-145 and attenuated by 50% the decreases in α-actin, despite uremia-induced hyperphosphatemia. In conclusion, vitamin D was able to prevent the reductions in aortic miR-145 and α-actin content induced by uremia, reducing the alterations in vascular contractility and osteogenic differentiation despite hyperphosphatemia.


Assuntos
Hiperfosfatemia , MicroRNAs , Uremia , Calcificação Vascular , Actinas , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Camundongos , MicroRNAs/genética , Miócitos de Músculo Liso , Osteogênese/genética , Ratos , Calcificação Vascular/etiologia , Calcificação Vascular/prevenção & controle , Vitamina D/efeitos adversos
12.
BMC Med ; 20(1): 83, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35177066

RESUMO

BACKGROUND: Vitamin D status has been implicated in COVID-19 disease. The objective of the COVID-VIT-D trial was to investigate if an oral bolus of cholecalciferol (100,000 IU) administered at hospital admission influences the outcomes of moderate-severe COVID-19 disease. In the same cohort, the association between baseline serum calcidiol levels with the same outcomes was also analysed. METHODS: The COVID-VIT-D is a multicentre, international, randomised, open label, clinical trial conducted throughout 1 year. Patients older than 18 years with moderate-severe COVID-19 disease requiring hospitalisation were included. At admission, patients were randomised 1:1 to receive a single oral bolus of cholecalciferol (n=274) or nothing (n=269). Patients were followed from admission to discharge or death. Length of hospitalisation, admission to intensive care unit (ICU) and mortality were assessed. RESULTS: In the randomised trial, comorbidities, biomarkers, symptoms and drugs used did not differ between groups. Median serum calcidiol in the cholecalciferol and control groups were 17.0 vs. 16.1 ng/mL at admission and 29.0 vs. 16.4 ng/mL at discharge, respectively. The median length of hospitalisation (10.0 [95%CI 9.0-10.5] vs. 9.5 [95%CI 9.0-10.5] days), admission to ICU (17.2% [95%CI 13.0-22.3] vs. 16.4% [95%CI 12.3-21.4]) and death rate (8.0% [95%CI 5.2-12.1] vs. 5.6% [95%CI 3.3-9.2]) did not differ between the cholecalciferol and control group. In the cohort analyses, the highest serum calcidiol category at admission (>25ng/mL) was associated with lower percentage of pulmonary involvement and better outcomes. CONCLUSIONS: The randomised clinical trial showed the administration of an oral bolus of 100,000 IU of cholecalciferol at hospital admission did not improve the outcomes of the COVID-19 disease. A cohort analysis showed that serum calcidiol at hospital admission was associated with outcomes. TRIAL REGISTRATION: COVID-VIT-D trial was authorised by the Spanish Agency for Medicines and Health products (AEMPS) and registered in European Union Drug Regulating Authorities Clinical Trials (EudraCT 2020-002274-28) and in ClinicalTrials.gov ( NCT04552951 ).


Assuntos
COVID-19 , Colecalciferol , Método Duplo-Cego , Hospitalização , Hospitais , Humanos , SARS-CoV-2 , Resultado do Tratamento , Vitamina D
13.
Nutrients ; 13(11)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34836090

RESUMO

Vascular Calcification (VC), low bone mass and fragility fractures are frequently observed in ageing subjects. Although this clinical observation could be the mere coincidence of frequent age-dependent disorders, clinical and experimental data suggest that VC and bone loss could share pathophysiological mechanisms. Indeed, VC is an active process of calcium and phosphate precipitation that involves the transition of the vascular smooth muscle cells (VSMCs) into osteoblast-like cells. Among the molecules involved in this process, parathyroid hormone (PTH) plays a key role acting through several mechanisms which includes the regulation of the RANK/RANKL/OPG system and the Wnt/ß-catenin pathway, the main pathways for bone resorption and bone formation, respectively. Furthermore, some microRNAs have been implicated as common regulators of bone metabolism, VC, left ventricle hypertrophy and myocardial fibrosis. Elucidating the common mechanisms between ageing; VC and bone loss could help to better understand the potential effects of osteoporosis drugs on the CV system.


Assuntos
Envelhecimento/fisiologia , Osteoporose/fisiopatologia , Calcificação Vascular/fisiopatologia , Reabsorção Óssea/fisiopatologia , Humanos , Osteogênese/fisiologia
14.
Calcif Tissue Int ; 108(4): 439-451, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33586001

RESUMO

In the course of chronic kidney disease (CKD), alterations in the bone-vascular axis augment the risk of bone loss, fractures, vascular and soft tissue calcification, left ventricular hypertrophy, renal and myocardial fibrosis, which markedly increase morbidity and mortality rates. A major challenge to improve skeletal and cardiovascular outcomes in CKD patients requires a better understanding of the increasing complex interactions among the main modulators of the bone-vascular axis. Serum parathyroid hormone (PTH), phosphorus (P), calcium (Ca), fibroblast growth factor 23 (FGF23), calcidiol, calcitriol and Klotho are involved in this axis interact with RANK/RANKL/OPG system and the Wnt/ß-catenin pathway. The RANK/RANKL/OPG system controls bone remodeling by inducing osteoblast synthesis of RANKL and downregulating OPG production and it is also implicated in vascular calcification. The complexity of this system has recently increased due the discovery of LGR4, a novel RANKL receptor involved in bone formation, but possibly also in vascular calcification. The Wnt/ß-catenin pathway plays a key role in bone formation: when this pathway is activated, bone is formed, but when it is inhibited, bone formation is stopped. In the progression of CKD, a downregulation of the Wnt/ß-catenin pathway has been described which occurs mainly through the not coincident elevations of sclerostin, Dickkopf1 (Dkk1) and the secreted Frizzled Related Proteins (sFRPs). This review analyzes the interactions of PTH, P, Ca, FGF23, calcidiol, calcitriol and Klotho with the RANKL/RANKL/OPG system and the Wnt/ß-catenin, pathway and their implications in bone and cardiovascular disorders in CKD.


Assuntos
Cateninas , Insuficiência Renal Crônica , Remodelação Óssea , Osso e Ossos , Fator de Crescimento de Fibroblastos 23 , Humanos , Osteoprotegerina , Ligante RANK , Receptor Ativador de Fator Nuclear kappa-B
15.
Nephrol Dial Transplant ; 36(5): 793-803, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33416889

RESUMO

BACKGROUND: In chronic kidney disease, the activation of the renin-angiotensin-aldosterone system (RAAS) and renal inflammation stimulates renal fibrosis and the progression to end-stage renal disease. The low levels of vitamin D receptor (VDR) and its activators (VDRAs) contribute to worsen secondary hyperparathyroidism and renal fibrosis. METHODS: The 7/8 nephrectomy model of experimental chronic renal failure (CRF) was used to examine the anti-fibrotic effects of treatment with two VDRAs, paricalcitol and calcitriol, at equivalent doses (3/1 dose ratio) during 4 weeks. RESULTS: CRF increased the activation of the RAAS, renal inflammation and interstitial fibrosis. Paricalcitol treatment reduced renal collagen I and renal interstitial fibrosis by decreasing the activation of the RAAS through renal changes in renin, angiotensin receptor 1 (ATR1) and ATR2 mRNAs levels and renal inflammation by decreasing renal inflammatory leucocytes (CD45), a desintegrin and metaloproteinase mRNA, transforming growth factor beta mRNA and protein, and maintaining E-cadherin mRNA levels. Calcitriol showed similar trends without significant changes in most of these biomarkers. CONCLUSIONS: Paricalcitol effectively attenuated the renal interstitial fibrosis induced by CRF through a combination of inhibitory actions on the RAAS, inflammation and epithelial/mesenchymal transition.


Assuntos
Calcitriol , Animais , Biomarcadores/metabolismo , Calcitriol/farmacologia , Ergocalciferóis , Fibrose , Hiperparatireoidismo Secundário/tratamento farmacológico , Inflamação/metabolismo , Rim/metabolismo , Falência Renal Crônica/complicações , Receptores de Calcitriol/metabolismo , Insuficiência Renal Crônica/complicações , Renina/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos
16.
Int J Mol Sci ; 22(1)2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33401711

RESUMO

Fibrosis is a process characterized by an excessive accumulation of the extracellular matrix as a response to different types of tissue injuries, which leads to organ dysfunction. The process can be initiated by multiple and different stimuli and pathogenic factors which trigger the cascade of reparation converging in molecular signals responsible of initiating and driving fibrosis. Though fibrosis can play a defensive role, in several circumstances at a certain stage, it can progressively become an uncontrolled irreversible and self-maintained process, named pathological fibrosis. Several systems, molecules and responses involved in the pathogenesis of the pathological fibrosis of chronic kidney disease (CKD) will be discussed in this review, putting special attention on inflammation, renin-angiotensin system (RAS), parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), Klotho, microRNAs (miRs), and the vitamin D hormonal system. All of them are key factors of the core and regulatory pathways which drive fibrosis, having a great negative kidney and cardiac impact in CKD.


Assuntos
Diabetes Mellitus/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Fibrose/metabolismo , Glucuronidase/metabolismo , MicroRNAs/metabolismo , Hormônio Paratireóideo/metabolismo , Insuficiência Renal Crônica/metabolismo , Vitamina D/metabolismo , Progressão da Doença , Feminino , Fator de Crescimento de Fibroblastos 23 , Fibrose/patologia , Humanos , Inflamação/metabolismo , Proteínas Klotho , Masculino , MicroRNAs/genética , Fosfatos/metabolismo , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/patologia , Sistema Renina-Angiotensina
17.
Nephrol Dial Transplant ; 36(4): 618-631, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33367746

RESUMO

BACKGROUND: In chronic kidney disease, serum phosphorus (P) elevations stimulate parathyroid hormone (PTH) production, causing severe alterations in the bone-vasculature axis. PTH is the main regulator of the receptor activator of nuclear factor κB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system, which is essential for bone maintenance and also plays an important role in vascular smooth muscle cell (VSMC) calcification. The discovery of a new RANKL receptor, leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4), which is important for osteoblast differentiation but with an unknown role in vascular calcification (VC), led us to examine the contribution of LGR4 in high P/high PTH-driven VC. METHODS: In vivo studies were conducted in subtotally nephrectomized rats fed a normal or high P diet, with and without parathyroidectomy (PTX). PTX rats were supplemented with PTH(1-34) to achieve physiological serum PTH levels. In vitro studies were performed in rat aortic VSMCs cultured in control medium, calcifying medium (CM) or CM plus 10-7 versus 10-9 M PTH. RESULTS: Rats fed a high P diet had a significantly increased aortic calcium (Ca) content. Similarly, Ca deposition was higher in VSMCs exposed to CM. Both conditions were associated with increased RANKL and LGR4 and decreased OPG aorta expression and were exacerbated by high PTH. Silencing of LGR4 or parathyroid hormone receptor 1 (PTH1R) attenuated the high PTH-driven increases in Ca deposition. Furthermore, PTH1R silencing and pharmacological inhibition of protein kinase A (PKA), but not protein kinase C, prevented the increases in RANKL and LGR4 and decreased OPG. Treatment with PKA agonist corroborated that LGR4 regulation is a PTH/PKA-driven process. CONCLUSIONS: High PTH increases LGR4 and RANKL and decreases OPG expression in the aorta, thereby favouring VC. The hormone's direct pro-calcifying actions involve PTH1R binding and PKA activation.


Assuntos
Miócitos de Músculo Liso/metabolismo , Osteoprotegerina/metabolismo , Hormônio Paratireóideo/farmacologia , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Calcificação Vascular/metabolismo , Animais , Hormônios e Agentes Reguladores de Cálcio/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ligantes , Masculino , NF-kappa B/metabolismo , Osteoprotegerina/genética , Ligante RANK/genética , Ratos , Ratos Wistar , Receptor Ativador de Fator Nuclear kappa-B/genética , Receptores Acoplados a Proteínas G/genética
18.
Sci Rep ; 9(1): 17810, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31780737

RESUMO

In chronic kidney disease (CKD), hyperphosphatemia-induced inflammation aggravates vascular calcification (VC) by increasing vascular smooth muscle cell (VSMC) osteogenic differentiation, ADAM17-induced renal and vascular injury, and TNFα-induction of neutral-sphingomyelinase2 (nSMase2) to release pro-calcifying exosomes. This study examined anti-inflammatory ß-glucans efficacy at attenuating systemic inflammation in health, and renal and vascular injury favoring VC in hyperphosphatemic CKD. In healthy adults, dietary barley ß-glucans (Bßglucans) reduced leukocyte superoxide production, inflammatory ADAM17, TNFα, nSMase2, and pro-aging/pro-inflammatory STING (Stimulator of interferon genes) gene expression without decreasing circulating inflammatory cytokines, except for γ-interferon. In hyperphosphatemic rat CKD, dietary Bßglucans reduced renal and aortic ADAM17-driven inflammation attenuating CKD-progression (higher GFR and lower serum creatinine, proteinuria, kidney inflammatory infiltration and nSMase2), and TNFα-driven increases in aortic nSMase2 and calcium deposition without improving mineral homeostasis. In VSMC, Bßglucans prevented LPS- or uremic serum-induced rapid increases in ADAM17, TNFα and nSMase2, and reduced the 13-fold higher calcium deposition induced by prolonged calcifying conditions by inhibiting osteogenic differentiation and increases in nSMase2 through Dectin1-independent actions involving Bßglucans internalization. Thus, dietary Bßglucans inhibit leukocyte superoxide production and leukocyte, renal and aortic ADAM17- and nSMase2 gene expression attenuating systemic inflammation in health, and renal injury and aortic calcification despite hyperphosphatemia in CKD.


Assuntos
Proteína ADAM17/antagonistas & inibidores , Hordeum/química , Insuficiência Renal Crônica/dietoterapia , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Calcificação Vascular/dietoterapia , beta-Glucanas/uso terapêutico , Adulto , Animais , Modelos Animais de Doenças , Feminino , Voluntários Saudáveis , Humanos , Inflamação/dietoterapia , Masculino , Camundongos , Pessoa de Meia-Idade , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Adulto Jovem , beta-Glucanas/farmacologia
19.
Nephrol Dial Transplant ; 34(6): 934-941, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30189026

RESUMO

BACKGROUND: In chronic kidney disease (CKD), increases in serum phosphate and parathyroid hormone (PTH) aggravate vascular calcification (VC) and bone loss. This study was designed to discriminate high phosphorus (HP) and PTH contribution to VC and bone loss. METHODS: Nephrectomized rats fed a HP diet underwent either sham operation or parathyroidectomy and PTH 1-34 supplementation to normalize serum PTH. RESULTS: In uraemic rats fed a HP diet, parathyroidectomy with serum PTH 1-34 supplementation resulted in (i) reduced aortic calcium (80%) by attenuating osteogenic differentiation (higher α-actin; reduced Runx2 and BMP2) and increasing the Wnt inhibitor Sclerostin, despite a similar degree of hyperphosphataemia, renal damage and serum Klotho; (ii) prevention of bone loss mostly by attenuating bone resorption and increases in Wnt inhibitors; and (iii) a 70% decrease in serum calcitriol levels despite significantly reduced serum Fgf23, calcium and renal 24-hydroxylase, which questions that Fgf23 is the main regulator of renal calcitriol production. Significantly, when vascular smooth muscle cells (VSMCs) were exposed exclusively to high phosphate and calcium, high PTH enhanced while low PTH attenuated calcium deposition through parathyroid hormone 1 receptor (PTH1R) signalling. CONCLUSIONS: In hyperphosphataemic CKD, a defective suppression of high PTH exacerbates HP-mediated osteogenic VSMC differentiation and reduces vascular levels of anti-calcifying sclerostin.


Assuntos
Hormônio Paratireóideo/sangue , Fosfatos/sangue , Insuficiência Renal Crônica/sangue , Calcificação Vascular/metabolismo , Animais , Doenças Ósseas Metabólicas/sangue , Proteína Morfogenética Óssea 2/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Calcitriol/sangue , Cálcio/sangue , Cálcio/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/metabolismo , Marcadores Genéticos , Hiperfosfatemia/metabolismo , Rim/efeitos dos fármacos , Masculino , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Nefrectomia , Osteogênese/efeitos dos fármacos , Hormônio Paratireóideo/uso terapêutico , Paratireoidectomia , Fosforilação , Ratos , Ratos Wistar , Vitamina D3 24-Hidroxilase/metabolismo
20.
Nephrol Dial Transplant ; 32(11): 1831-1840, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28460073

RESUMO

BACKGROUND: Uraemic cardiomyopathy, a process mainly associated with increased myocardial fibrosis, is the leading cause of death in chronic kidney disease patients and can be prevented by vitamin D receptor activators (VDRAs). Since some microRNAs (miRNAs) have emerged as regulators of the fibrotic process, we aimed to analyse the role of specific miRNAs in VDRA prevention of myocardial fibrosis as well as their potential use as biomarkers. METHODS: Wistar rats were nephrectomized and treated intraperitoneally with equivalent doses of two VDRAs: calcitriol and paricalcitol. Biochemical parameters, cardiac fibrosis, miRNA (miR-29b, miR-30c and miR-133b) levels in the heart and serum and expression of their target genes collagen I (COL1A1), matrix metalloproteinase 2 (MMP-2) and connective tissue growth factor (CTGF) in the heart were evaluated. RESULTS: Both VDRAs attenuated cardiac fibrosis, achieving a statistically significant difference in the paricalcitol-treated group. Increases in RNA and protein levels of COL1A1, MMP-2 and CTGF and reduced expression of miR-29b and miR-30c, known regulators of these pro-fibrotic genes, were observed in the heart of chronic renal failure (CRF) rats and were attenuated by both VDRAs. In serum, significant increases in miR-29b, miR-30c and miR-133b levels were observed in CRF rats, which were prevented by VDRA use. Moreover, vitamin D response elements were identified in the three miRNA promoters. CONCLUSIONS: VDRAs, particularly paricalcitol, attenuated cardiac fibrosis acting on COL1A1, MMP-2 and CTGF expression, partly through regulation of miR-29b and miR-30c. These miRNAs and miR-133b could be useful serum biomarkers for cardiac fibrosis and also potential new therapeutic targets.


Assuntos
Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , MicroRNAs/genética , Receptores de Calcitriol/fisiologia , Uremia/metabolismo , Animais , Biomarcadores/metabolismo , Calcitriol/farmacologia , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Ergocalciferóis/farmacologia , Fibrose , Regulação da Expressão Gênica , Falência Renal Crônica/complicações , Falência Renal Crônica/metabolismo , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , MicroRNAs/metabolismo , Miocárdio/patologia , Ratos , Ratos Wistar , Transdução de Sinais , Uremia/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA