Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 22497, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795311

RESUMO

The dynamics of epidemics depend on how people's behavior changes during an outbreak. At the beginning of the epidemic, people do not know about the virus, then, after the outbreak of epidemics and alarm, they begin to comply with the restrictions and the spreading of epidemics may decline. Over time, some people get tired/frustrated by the restrictions and stop following them (exhaustion), especially if the number of new cases drops down. After resting for a while, they can follow the restrictions again. But during this pause the second wave can come and become even stronger then the first one. Studies based on SIR models do not predict the observed quick exit from the first wave of epidemics. Social dynamics should be considered. The appearance of the second wave also depends on social factors. Many generalizations of the SIR model have been developed that take into account the weakening of immunity over time, the evolution of the virus, vaccination and other medical and biological details. However, these more sophisticated models do not explain the apparent differences in outbreak profiles between countries with different intrinsic socio-cultural features. In our work, a system of models of the COVID-19 pandemic is proposed, combining the dynamics of social stress with classical epidemic models. Social stress is described by the tools of sociophysics. The combination of a dynamic SIR-type model with the classical triad of stages of the general adaptation syndrome, alarm-resistance-exhaustion, makes it possible to describe with high accuracy the available statistical data for 13 countries. The sets of kinetic constants corresponding to optimal fit of model to data were found. These constants characterize the ability of society to mobilize efforts against epidemics and maintain this concentration over time and can further help in the development of management strategies specific to a particular society.


Assuntos
COVID-19 , Modelos Biológicos , Pandemias , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , Humanos
2.
PLoS One ; 13(1): e0190434, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29351336

RESUMO

Bacterial chemotaxis is one of the most extensively studied adaptive responses in cells. Many bacteria are able to bias their apparently random motion to produce a drift in the direction of the increasing chemoattractant concentration. It has been recognized that the particular motility pattern employed by moving bacteria has a direct impact on the efficiency of chemotaxis. The linear theory of chemotaxis pioneered by de Gennes allows for calculation of the drift velocity in small gradients for bacteria with basic motility patterns. However, recent experimental data on several bacterial species highlighted the motility pattern where the almost straight runs of cells are interspersed with turning events leading to the reorientation of the cell swimming directions with two distinct angles following in strictly alternating order. In this manuscript we generalize the linear theory of chemotaxis to calculate the chemotactic drift speed for the motility pattern of bacteria with two turning angles. By using the experimental data on motility parameters of V. alginolyticus bacteria we can use our theory to relate the efficiency of chemotaxis and the size of bacterial cell body. The results of this work can have a straightforward extension to address most general motility patterns with alternating angles, speeds and durations of runs.


Assuntos
Quimiotaxia/fisiologia , Modelos Biológicos , Vibrio alginolyticus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA