Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Heart Lung Circ ; 19(11): 644-54, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20719564

RESUMO

PURPOSE: Post-myocardial infarction heart failure is a major health concern with limited therapy. Molecular revascularisation utilising granulocyte-macrophage colony stimulating factor (GMCSF) mediated endothelial progenitor cell (EPC) upregulation and stromal cell derived factor-1α (SDF) mediated myocardial EPC chemokinesis, may prevent myocardial loss and adverse remodelling. Vasculogenesis, viability, and haemodynamic improvements following therapy were investigated. PROCEDURES: Lewis rats (n=91) underwent LAD ligation and received either intramyocardial SDF and subcutaneous GMCSF or saline injections at the time of infarction. Molecular and haemodynamic assessments were performed at pre-determined time points following ligation. FINDINGS: SDF/GMCSF therapy upregulated EPC density as shown by flow cytometry (0.12±0.02% vs. 0.06±0.01% circulating lymphocytes, p=0.005), 48hours following infarction. A marked increase in perfusion was evident eight weeks after therapy, utilising confocal angiography (5.02±1.7×10(-2)µm(3)blood/µm(3)myocardial tissue vs. 2.03±0.710(-2)µm(3)blood/µm(3)myocardial tissue, p=0.00004). Planimetric analysis demonstrated preservation of wall thickness (0.98±0.09mm vs. 0.67±0.06mm, p=0.003) and ventricular diameter (7.81±0.99mm vs. 9.41±1.1mm, p=0.03). Improved haemodynamic function was evidenced by echocardiography and PV analysis (ejection fraction: 56.4±18.1% vs. 25.3±15.6%, p=0.001; pre-load adjusted maximal power: 6.6±2.6mW/µl(2) vs. 2.7±1.4mW/µl(2), p=0.01). CONCLUSION: Neovasculogenic therapy with GMCSF-mediated EPC upregulation and SDF-mediated EPC chemokinesis maybe an effective therapy for infarct modulation and preservation of myocardial function following acute myocardial infarction.


Assuntos
Quimiocina CXCL12/uso terapêutico , Células Endoteliais/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Coração/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Infarto do Miocárdio/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Apoptose , Quimiocina CXCL12/farmacologia , Ecocardiografia , Citometria de Fluxo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Ventrículos do Coração/anatomia & histologia , Células-Tronco Hematopoéticas/fisiologia , Masculino , Modelos Animais , Miocárdio/patologia , Ratos , Ratos Endogâmicos Lew , Regulação para Cima
2.
J Thorac Cardiovasc Surg ; 135(2): 283-91, 291.e1; discussion 291, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18242252

RESUMO

OBJECTIVE: A significant number of patients have coronary artery disease that is not amenable to traditional revascularization. Prospective, randomized clinical trials have demonstrated therapeutic benefits with transmyocardial laser revascularization in this cohort. The molecular mechanisms underlying this therapy, however, are poorly understood. The focus of this study was evaluation of the proposed vasculogenic mechanisms involved in transmyocardial laser revascularization. METHODS: Male Yorkshire pigs (30-35 kg, n = 25) underwent left thoracotomy and placement of ameroid constrictors around the proximal left circumflex coronary artery. During the next 4 weeks, a well-defined region of myocardial ischemia developed, and the animals underwent a redo left thoracotomy. The animals were randomly assigned to sham treatment (thoracotomy only, control, n = 11) or transmyocardial laser revascularization of hibernating myocardium with a holmium:yttrium-aluminum-garnet laser (n = 14). After an additional 4 weeks, the animals underwent median sternotomy, echocardiographic analysis of wall motion, and hemodynamic analysis with an ascending aortic flow probe and pulmonary artery catheter. The hearts were explanted for molecular analysis. RESULTS: Molecular analysis demonstrated statistically significant increases in the proangiogenic proteins nuclear factor kappaB (42 +/- 27 intensity units vs 591 +/- 383 intensity units, P = .03) and angiopoietin 1 (0 +/- 0 intensity units vs 241 +/- 87 intensity units, P = .003) relative to sham control values with transmyocardial laser revascularization within the ischemic myocardium. There were also increases in vasculogenesis (18.8 +/- 8.7 vessels/high-power field vs 31.4 +/- 10.2 vessels/high-power field, P = .02), and perfusion (0.028 +/- 0.009 microm3 blood/microm3 tissue vs 0.044 +/- 0.004 microm3 blood/microm3 tissue, P = .01). Enhanced myocardial viability was demonstrated by increased myofilament density (40.7 +/- 8.5 cardiomyocytes/high-power field vs 50.8 +/- 7.5 cardiomyocytes/high-power field, P = .03). Regional myocardial function within the treated territory demonstrated augmented contractility. Global hemodynamic function was significantly improved relative to the control group with transmyocardial laser revascularization (cardiac output 2.1 +/- 0.2 L/min vs 2.7 +/- 0.2 L/min, P = .007, mixed venous oxygen saturation 64.7% +/- 3.6% vs 76.1% +/- 3.4%, P = .008). CONCLUSION: Transmyocardial laser revascularization with the holmium-YAG laser enhances perfusion, with resultant improvement in myocardial contractility.


Assuntos
Circulação Coronária/fisiologia , Terapia a Laser , Isquemia Miocárdica/cirurgia , Revascularização Miocárdica/métodos , Animais , Quimiocinas/metabolismo , Modelos Animais de Doenças , Citometria de Fluxo , Hemodinâmica/fisiologia , Lasers de Estado Sólido , Masculino , Contração Miocárdica/fisiologia , Neovascularização Fisiológica , Probabilidade , Distribuição Aleatória , Valores de Referência , Sensibilidade e Especificidade , Suínos , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
J Thorac Cardiovasc Surg ; 133(4): 927-33, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17382628

RESUMO

OBJECTIVE: Heart failure therapies ranging from revascularization to remodeling to replacement are variably effective. Theoretically, endogenous repair via myocardial regeneration would be an ideal therapy. This study examined the ability to initiate regeneration by adenoviral-mediated expression of the cell cycle regulator cyclin A2. Our prior studies have demonstrated robust cyclin A2 transgene expression and marked antiphosphorylated histone H3 activity with this strategy, indicating the induction of cardiomyocyte mitosis. METHODS: Adult male, Lewis rats underwent left anterior descending coronary artery ligation followed by intramyocardial delivery of either cyclin A2 adenoviral vector (n = 8) or empty adeno-null vector as a control (n = 8) into the peri-infarct border zone. In vivo myocardial function was analyzed by echocardiography and invasive left ventricular pressure catheter at 6 weeks, when the animals are traditionally in heart failure. Hearts were explanted for immunoblotting and left ventricular geometric analysis. Cellular proliferation was assessed by proliferating cellular nuclear antigen expression. RESULTS: Cyclin A2 hearts exhibited improved left ventricular function as compared with controls including enhanced cardiac output (32 +/- 3.3 vs 26 +/- 5.0 mL/min, P < .05), stroke volume (0.16 +/- 0.04 vs 0.11 +/- 0.04 mL, P < .05), ejection fraction (72% +/- 7.4% vs 46.% +/- 8.5%, P < .05), fractional shortening (35% +/- 5.4% vs 19% +/- 4.3%, P < .002), maximum pressure (72 +/- 9.3 vs 61 +/- 2.9 mm Hg, P < .05), and end-systolic pressure (67 +/- 7.0 vs 55 +/- 7.0 mm Hg, P < .05). Enhanced myocardial preservation was demonstrated by enhanced left ventricular border zone wall thickness. Increased myocardial proliferation was evidenced by increased expression of proliferating cell nuclear antigen expression in cyclin A2-treated hearts. CONCLUSIONS: In failing hearts, targeted delivery of cyclin A2 improves hemodynamic function, as measured by echocardiography and pressure catheter analysis, preserves ventricular wall thickness, and may serve as an ideal myocardial regenerative therapy.


Assuntos
Cardiomiopatias/tratamento farmacológico , Proteínas de Ciclo Celular/administração & dosagem , Ciclina A/administração & dosagem , Miócitos Cardíacos/fisiologia , Regeneração/efeitos dos fármacos , Adenoviridae , Animais , Cardiomiopatias/etiologia , Ciclina A2 , Modelos Animais de Doenças , Vetores Genéticos , Injeções Intralesionais , Masculino , Infarto do Miocárdio/complicações , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/etiologia , Antígeno Nuclear de Célula em Proliferação/biossíntese , Ratos , Ratos Endogâmicos Lew , Função Ventricular Esquerda/efeitos dos fármacos
4.
Cell Mol Biol Lett ; 12(1): 127-38, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17119870

RESUMO

Apelin interacts with the APJ receptor to enhance inotropy. In heart failure, apelin-APJ coupling may provide a means of enhancing myocardial function. The alterations in apelin and APJ receptor concentrations with ischemic cardiomyopathy are poorly understood. We investigated the compensatory changes in endogenous apelin and APJ levels in the setting of ischemic cardiomyopathy.Male, Lewis rats underwent LAD ligation and progressed into heart failure over 6 weeks. Corresponding animals underwent sham thoracotomy as control. Six weeks after initial surgery, the animals underwent hemodynamic functional analysis in the presence of exogenous apelin-13 infusion and the hearts were explanted for western blot and enzyme immunoassay analysis. Western blot analysis of myocardial APJ concentration demonstrated increased APJ receptor protein levels with heart failure (1890750+/-133500 vs. 901600+/-143120 intensity units, n=8, p=0.00001). Total apelin protein levels increased with ischemic heart failure as demonstrated by enzyme immunoassay (12.0+/-4.6 vs. 1.0+/-1.2 ng/ml, n=5, p=0.006) and western blot (1579400+/-477733 vs. 943000+/-157600 intensity units, n=10, p=0.008). Infusion of apelin-13 significantly enhanced myocardial function in sham and failing hearts. We conclude that total myocardial apelin and APJ receptor levels increase in compensation for ischemic cardiomyopathy.


Assuntos
Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Apelina , Receptores de Apelina , Pressão Sanguínea/efeitos dos fármacos , Western Blotting , Débito Cardíaco/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Masculino , Peso Molecular , Isquemia Miocárdica/fisiopatologia , Miocárdio/patologia , Ratos , Ratos Endogâmicos Lew
5.
Circulation ; 114(1 Suppl): I206-13, 2006 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-16820573

RESUMO

BACKGROUND: Heart failure is a global health concern. As a novel therapeutic strategy, the induction of endogenous myocardial regeneration was investigated by initiating cardiomyocyte mitosis by expressing the cell cycle regulator cyclin A2. METHODS AND RESULTS: Lewis rats underwent left anterior descending coronary artery ligation followed by peri-infarct intramyocardial delivery of adenoviral vector expressing cyclin A2 (n =32) or empty adeno-null (n =32). Cyclin A2 expression was characterized by Western Blot and immunohistochemistry. Six weeks after surgery, in vivo myocardial function was analyzed using an ascending aortic flow probe and pressure-volume catheter. DNA synthesis was analyzed by proliferating cell nuclear antigen (PCNA), Ki-67, and BrdU. Mitosis was analyzed by phosphohistone-H3 expression. Myofilament density and ventricular geometry were assessed. Cyclin A2 levels peaked at 2 weeks and tapered off by 4 weeks. Borderzone cardiomyocyte cell cycle activation was demonstrated by increased PCNA (40.1+/-2.6 versus 9.3+/-1.1; P<0.0001), Ki-67 (46.3+/-7.2 versus 20.4+/-6.0; P<0.0001), BrdU (44.2+/-13.7 versus 5.2+/-5.2; P<0.05), and phosphohistone-H3 (12.7+/-1.4 versus 0+/-0; P<0.0001) positive cells/hpf. Cyclin A2 hearts demonstrated increased borderzone myofilament density (39.8+/-1.1 versus 31.8+/-1.0 cells/hpf; P=0.0011). Borderzone wall thickness was greater in cyclin A2 hearts (1.7+/-0.4 versus 1.4+/-0.04 mm; P<0.0001). Cyclin A2 animals manifested improved hemodynamics: Pmax (70.6+/-8.9 versus 60.4+/-11.8 mm Hg; P=0.017), max dP/dt (3000+/-588 versus 2500+/-643 mm Hg/sec; P<0.05), preload adjusted maximal power (5.75+/-4.40 versus 2.75+/-0.98 mWatts/microL2; P<0.05), and cardiac output (26.8+/-3.7 versus 22.7+/-2.6 mL/min; P=0.004). CONCLUSIONS: A therapeutic strategy of cyclin A2 expression via gene transfer induced cardiomyocyte cell cycle activation yielded increased borderzone myofilament density and improved myocardial function. This approach of inducing endogenous myocardial regeneration provides proof-of-concept evidence that cyclin A2 may ultimately serve as an efficient, alternative therapy for heart failure.


Assuntos
Adenoviridae/genética , Ciclina A/fisiologia , Vírus Defeituosos/genética , Vetores Genéticos/uso terapêutico , Coração/fisiologia , Infarto do Miocárdio/terapia , Regeneração/fisiologia , Citoesqueleto de Actina/ultraestrutura , Animais , Ciclo Celular/fisiologia , Divisão Celular , Ciclina A/genética , Ciclina A2 , Replicação do DNA , Vetores Genéticos/genética , Insuficiência Cardíaca/prevenção & controle , Hemodinâmica , Injeções , Masculino , Camundongos , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Distribuição Aleatória , Ratos , Ratos Endogâmicos Lew , Proteínas Recombinantes de Fusão/fisiologia , Transdução Genética
6.
Asian Cardiovasc Thorac Ann ; 14(4): 306-9, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16868104

RESUMO

Left ventricular dysfunction is a predictor of perioperative morbidity and mortality in on-pump coronary artery bypass grafting. Obligatory global myocardial ischemia and injury induced during crossclamping as well as adverse systemic effects of cardiopulmonary bypass may induce a disproportionately greater overall physiologic insult in patients with poor ventricular function. All patients undergoing nonemergency off-pump coronary artery bypass by a single surgeon during an 18-month period were retrospectively analyzed. Two groups with preoperative ejection fraction classified as poor (10%-35%; n = 31) or normal (55%-80%; n = 60) were compared. The mean ejection fractions were 26% +/- 1% and 63% +/- 1% respectively, p < 0.000001. In those with significant left ventricular dysfunction, there were 2.8 +/- 0.1 grafts per patient, time to extubation was 8.4 +/- 1.2 hours, and discharge was after 4.9 +/- 0.6 days. These results were statistically equivalent to those in the group with normal left ventricular function. There was no intraaortic balloon pump insertion or mortality in either group. This technique provides an effective means of safely revascularizing patients with significant left ventricular dysfunction, and it may provide a valuable alternative approach in patients with ischemic cardiomyopathy.


Assuntos
Ponte de Artéria Coronária sem Circulação Extracorpórea , Disfunção Ventricular Esquerda/cirurgia , Idoso , Feminino , Humanos , Masculino , Estudos Retrospectivos , Volume Sistólico , Resultado do Tratamento
7.
Ann Thorac Surg ; 81(5): 1728-36, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16631663

RESUMO

BACKGROUND: Ischemic cardiomyopathy is a global health concern with limited therapy. We recently described endogenous revascularization utilizing granulocyte-macrophage colony stimulating factor (GMCSF) to induce endothelial progenitor cell (EPC) production and intramyocardial stromal cell-derived factor-1alpha (SDF) as a specific EPC chemokine. The EPC-mediated neovascularization and enhancement of myocardial function was observed. In this study we examined the regional biologic mechanisms underlying this therapy. METHODS: Lewis rats underwent left anterior descending coronary artery (LAD) ligation and developed ischemic cardiomyopathy over 6 weeks. Three weeks after ligation, the animals received either subcutaneous GMCSF and intramyocardial SDF injections or saline injections as control. Six weeks after LAD ligation circulating EPC density was studied by flow cytometry. Quadruple immunofluorescent vessel staining for mature, proliferating vasculature was performed. Confocal angiography was utilized to identify fluorescein lectin-lined vessels to assess perfusion. Ischemia reversal was studied by measuring myocardial adenosine triphosphate (ATP) levels. Myocardial viability was assayed by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling detection of apoptosis and quantitation of myofilament density. RESULTS: The GMCSF/SDF therapy enhanced circulating leukocyte (13.1 +/- 4.5 x 10(6) vs 3.1 +/- 0.5 x 10(6)/cc, p = 0.001, n = 6) and EPC (14.2 +/- 6.6 vs 2.2 +/- 2.1/cc, p = 0.001, n = 6) concentrations. Tetraimmunofluorescent labeling demonstrated enhanced stable vasculature with this therapy (39.2 +/- 8.1 vs 25.4 +/- 5.1%, p = 0.006, n = 7). Enhanced perfusion was shown by confocal microangiography of borderzone lectin-labeled vessels (28.2 +/- 5.4 vs 11.5 +/- 3.0 vessels/high power field [hpf], p = 0.00001, n = 10). Ischemia reversal was demonstrated by enhanced cellular ATP levels in the GMCSF/SDF borderzone myocardium (102.5 +/- 31.0 vs 26.9 +/- 4.1 nmol/g, p = 0.008, n = 5). Borderzone cardiomyocyte viability was noted by decreased apoptosis (3.2 +/- 1.4% vs 5.4 +/- 1.0%, p = 0.004, n = 10) and enhanced cardiomyocyte density (40.0 +/- 5.6 vs 27.0 +/- 6 myofilaments/hpf, p = 0.01, n=10). CONCLUSIONS: Endogenous revascularization for ischemic cardiomyopathy utilizing GMCSF EPC upregulation and SDF EPC chemokinesis upregulates circulating EPCs, enhances vascular stability, and augments myocardial function by enhancing perfusion, reversing cellular ischemia, and increasing cardiomyocyte viability.


Assuntos
Quimiocinas CXC/farmacologia , Endotélio Vascular/citologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Isquemia Miocárdica/fisiopatologia , Neovascularização Fisiológica/efeitos dos fármacos , Transplante de Células-Tronco , Células Estromais , Animais , Apoptose , Movimento Celular/fisiologia , Sobrevivência Celular , Quimiocina CXCL12 , Quimiocinas CXC/uso terapêutico , Fator Estimulador de Colônias de Granulócitos e Macrófagos/fisiologia , Mobilização de Células-Tronco Hematopoéticas , Marcação In Situ das Extremidades Cortadas , Masculino , Ratos , Ratos Endogâmicos Lew , Fluxo Sanguíneo Regional , Células-Tronco/fisiologia
8.
Heart Lung Circ ; 15(2): 119-23, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16469539

RESUMO

BACKGROUND: Cardiomyocyte energy production during ischemia depends upon anaerobic glycolysis inefficiently yielding two ATP per glucose. Substrate augmentation with fructose 1,6-diphosphate (FDP) bypasses the ATP consuming steps of glucokinase and phosphofructokinase thus yielding four ATP per FDP. This study evaluated the impact of FDP administration on myocardial function after acute ischemia. METHODS: Male Wistar rats, 250-300 g, underwent 30 min occlusion of the left anterior descending coronary artery followed by 30 min reperfusion. Immediately prior to both ischemia and reperfusion, animals received an intravenous bolus of FDP or saline control. After 30 min reperfusion, myocardial function was evaluated with a left ventricular intracavitary pressure/volume conductance microcatheter. For bioenergetics studies, myocardium was isolated at 5 min of ischemia and assayed for ATP levels. RESULTS: Compared to controls (n=8), FDP animals (n=8) demonstrated significantly improved maximal left ventricular pressure (100.5+/-5.4 mmHg versus 69.1+/-1.9 mmHg; p<0.0005), dP/dt (5296+/-531 mmHg/s versus 2940+/-175 mmHg/s; p<0.0028), ejection fraction (29.1+/-1.7% versus 20.4+/-1.4%; p<0.0017), and preload adjusted maximal power (59.3+/-5.0 mW/microL(2) versus 44.4+/-4.6 mW/microL(2); p<0.0477). Additionally, significantly enhanced ATP levels were observed in FDP animals (n=5) compared to controls (n=5) (535+/-156 nmol/g ischemic tissue versus 160+/-9.0 nmol/g ischemic tissue; p<0.0369). CONCLUSIONS: The administration of the glycolytic intermediate, FDP, by intravenous injection, resulted in significantly improved myocardial function after ischemia and improved bioenergetics during ischemia.


Assuntos
Antiarrítmicos/administração & dosagem , Fármacos Cardiovasculares/administração & dosagem , Frutosedifosfatos/administração & dosagem , Isquemia Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Fosfofrutoquinase-1/biossíntese , Fosfofrutoquinase-1/metabolismo , Disfunção Ventricular Esquerda/tratamento farmacológico , Trifosfato de Adenosina/metabolismo , Animais , Antiarrítmicos/metabolismo , Fármacos Cardiovasculares/metabolismo , Frutosedifosfatos/metabolismo , Glicólise/efeitos dos fármacos , Injeções Intravenosas , Masculino , Modelos Animais , Isquemia Miocárdica/complicações , Traumatismo por Reperfusão Miocárdica/complicações , Traumatismo por Reperfusão Miocárdica/enzimologia , Fosfofrutoquinase-1/efeitos dos fármacos , Ratos , Ratos Wistar , Disfunção Ventricular Esquerda/enzimologia , Disfunção Ventricular Esquerda/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA