Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(6): 347, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38802574

RESUMO

The synthesis of three-dimensional silver nanopopcorns (Ag NPCs) onto a flexible polycarbonate membrane (PCM) for the detection of nitrofurazone (NFZ) on the fish surface by surface-enhanced Raman spectroscopy (SERS) is presented. The proposed flexible Ag-NPCs/PCM SERS substrate exhibits significant Raman signal intensity enhancement with the measured enhancement factor of 2.36 × 106. This is primarily attributed to the hotspots created on Ag NPCs, including numerous nanoscale protrusions and internal crevices distributed across the surface of Ag NPCs. The detection of NFZ by this flexible SERS substrate demonstrates a low limit of detection (LOD) of 3.7 × 10-9 M and uniform and reproducible Raman signal intensities with a relative standard deviation below 8.34%. It also exhibits excellent stability, retaining 70% of its efficacy even after 10 days of storage. Notably, the practical detection of NFZ in tap water, honey water, and fish surfaces achieves LOD values of 1.35 × 10-8 M, 5.76 × 10-7 M, and 3.61 × 10-8 M, respectively,  which highlights its effectiveness across different sample types. The developed Ag-NPCs/PCM SERS substrate presents promising potential for sensitive SERS detection of toxic substances in real-world samples.


Assuntos
Limite de Detecção , Nanopartículas Metálicas , Nitrofurazona , Prata , Análise Espectral Raman , Análise Espectral Raman/métodos , Prata/química , Nitrofurazona/análise , Nitrofurazona/química , Nanopartículas Metálicas/química , Animais , Peixes , Mel/análise , Água Potável/análise , Cimento de Policarboxilato/química , Membranas Artificiais , Poluentes Químicos da Água/análise , Propriedades de Superfície , Contaminação de Alimentos/análise
2.
Anal Chem ; 95(2): 1262-1272, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36577121

RESUMO

We report a novel approach for surface-enhanced Raman spectroscopy (SERS) detection in digital microfluidics (DMF). This is made possible by a microspray hole (µSH) that uses an electrostatic spray (ESTAS) for sample transfer from inside the chip to an external SERS substrate. To realize this, a new ESTAS-compatible stationary SERS substrate was developed and characterized for sensitive and reproducible SERS measurements. In a proof-of-concept study, we successfully applied the approach to detect various analyte molecules using the DMF chip and achieved micro-molar detection limits. Moreover, this technique was exemplarily employed to study an organic reaction occurring in the DMF device, providing vibrational spectroscopic data.


Assuntos
Microfluídica , Análise Espectral Raman , Microfluídica/métodos , Análise Espectral Raman/métodos
3.
Lab Chip ; 22(4): 665-682, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35107464

RESUMO

With the continuous development in nanoscience and nanotechnology, analytical techniques like surface-enhanced Raman spectroscopy (SERS) render structural and chemical information of a variety of analyte molecules in ultra-low concentration. Although this technique is making significant progress in various fields, the reproducibility of SERS measurements and sensitivity towards small molecules are still daunting challenges. In this regard, microfluidic surface-enhanced Raman spectroscopy (MF-SERS) is well on its way to join the toolbox of analytical chemists. This review article explains how MF-SERS is becoming a powerful tool in analytical chemistry. We critically present the developments in SERS substrates for microfluidic devices and how these substrates in microfluidic channels can improve the SERS sensitivity, reproducibility, and detection limit. We then introduce the building materials for microfluidic platforms and their types such as droplet, centrifugal, and digital microfluidics. Finally, we enumerate some challenges and future directions in microfluidic SERS. Overall, this article showcases the potential and versatility of microfluidic SERS in overcoming the inherent issues in the SERS technique and also discusses the advantage of adding SERS to the arsenal of microfluidics.


Assuntos
Microfluídica , Análise Espectral Raman , Nanotecnologia , Reprodutibilidade dos Testes , Análise Espectral Raman/métodos
4.
Light Sci Appl ; 10(1): 161, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349103

RESUMO

Raman and infrared (IR) spectroscopy are powerful analytical techniques, but have intrinsically low detection sensitivity. There have been three major steps (i) to advance the optical system of the light excitation, collection, and detection since 1920s, (ii) to utilize nanostructure-based surface-enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA) since 1990s, and (iii) to rationally couple (i) and (ii) for maximizing the total detection sensitivity since 2010s. After surveying the history of SERS and SEIRA, we outline the principle of plasmonics and the different mechanisms of SERS and SEIRA. We describe various interactions of light with nano/microstructures, localized surface plasmon, surface plasmon polariton, and lightning-rod effect. Their coupling effects can significantly increase the surface sensitivity by designing nanoparticle-nanoparticle and nanoparticle-substrate configuration. As the nano/microstructures have specific optical near-field and far-field behaviors, we focus on how to systematically design the macro-optical systems to maximize the excitation efficiency and detection sensitivity. We enumerate the key optical designs in particular ATR-based operation modes of directional excitation and emission from visible to IR spectral region. We also present some latest advancements on scanning-probe microscopy-based nanoscale spectroscopy. Finally, prospects and further developments of this field are given with emphasis on emerging techniques and methodologies.

5.
Anal Bioanal Chem ; 412(2): 267-277, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31797018

RESUMO

A three-dimensional microfluidic chip that combines sample manipulation and SERS detection on-chip was developed. This was successfully achieved by chip integration of a nanoporous polycarbonate track-etched (PCTE) membrane which connects microfluidic channels on two different levels with each other. The membrane fulfills two functions at the same time. On the one hand, it enables sample enrichment by selective electrokinetic transport processes through the membrane. On the other hand, the silver nanoparticle-coated backside of the same membrane enables SERS detection of the enriched analytes. The SERS substrate performance and the electrokinetic transport phenomena were studied using Rhodamine B (RhB) by Raman microscopy and fluorescence video microscopy. After system validation, the approach was attested by on-chip processing of a complex food sample. In a proof-of-concept study, the microfluidic device with the SERS substrate membrane was used to detect a concentration of 1 ppm melamine (705 cm-1) in whole milk. Electrokinetic transport across the nanoporous SERS substrate facilitates the extraction of analyte molecules from a sample channel into a detection channel via a potential gradient, thus easily removing obscuring compounds present in the sample matrix. The SERS signal of the analyte could be significantly increased by on-target sample drying. This was achieved by guiding an additional gas flow over the membrane which further extends the microfluidic functionality of the chip device. The proposed method possesses the advantages of combining a rapid (within 15 min) sample clean-up using electrokinetic transport in a three-dimensional microfluidic device which is highly suitable for sensitive and selective SERS detection of chemical and biological analytes. Graphical Abstract.

6.
Anal Chem ; 91(15): 9844-9851, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31260274

RESUMO

An electrochemical approach to enable surface-enhanced Raman spectroscopy (SERS) detection in continuous microflow is presented. This is achieved by the integration of a silver electrode as SERS substrate in a microfluidic chip device. By the application of actuation pulses of about 4 V, otherwise irreversibly adsorbed analytes are stripped off, which enables quasi-real-time SERS detection in a continuous microflow. The approach opens up a way for in situ SERS monitoring of compounds in microflow with high application potential in microseparation techniques like HPLC and lab-on-a-chip devices.

7.
Vib Spectrosc ; 98: 1-7, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30662146

RESUMO

Colloidal silver (Ag) nanoparticles (AgNP) have been widely used for surface-enhanced Raman spectroscopy (SERS) applications. We report a simple, rapid and effective method to prepare AgNP colloids for SERS using the classic organic chemistry Ag mirror reaction with Tollens' reagent. The AgNP colloid prepared with this process was characterized using SEM, and the reaction conditions further optimized using SERS measurements. It was found that Ag mirror reaction conditions that included 20 mM AgNO3, 5 min reaction time, and 0.5 M glucose produced AgNP colloids with an average size of 319.1 nm (s.d ±128.1). These AgNP colloids exhibited a significant SERS response when adenine was used as the reporter molecule. The usefulness of these new AgNP colloids was demonstrated by detecting the nucleotides adenosine 5'-monophosphate (AMP), guanosine 5'-monophosphate (GMP), cytidine 5'-monophosphate (CMP), and uridine 5'-monophosphate (UMP). A detection limit of 500 nM for AMP was achieved with the as-prepared AgNP colloid. The bacterium Mycoplasma pneumoniae was also easily detected in laboratory culture with these SERS substrates. These findings attest to the applicability of this AgNP colloid for the sensitive and specific detection of both small biomolecules and microorganisms.

8.
Chem Commun (Camb) ; 54(1): 10-25, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29139483

RESUMO

In this feature article, we discuss in detail developmental bottleneck issues in Raman spectroscopy in its early stages and surface-enhanced Raman spectroscopy (SERS) in the past four decades. We divide SERS research into two different directions with different targets. Fundamental research is extending the limits of SERS to single-molecule, sub-nanometer resolution and femtosecond processes. In contrast, practical research is expanding the range of applications with the aim of providing versatile analytical tools for surface, materials, life, environmental, forensic and food sciences and also commercial instruments for use in daily life. In the second direction there have continually been many complex bottlenecks to be overcome. We attempt to enumerate the key issues in detail and also describe the achievements made to overcome the bottlenecks. In the last, but not least important part, we discuss the remaining bottlenecks and possible strategies for overcoming them to enable SERS to be an even more powerful and versatile technique.

9.
Chem Rev ; 117(7): 5002-5069, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28271881

RESUMO

Core-shell nanoparticles are at the leading edge of the hot research topics and offer a wide range of applications in optics, biomedicine, environmental science, materials, catalysis, energy, and so forth, due to their excellent properties such as versatility, tunability, and stability. They have attracted enormous interest attributed to their dramatically tunable physicochemical features. Plasmonic core-shell nanomaterials are extensively used in surface-enhanced vibrational spectroscopies, in particular, surface-enhanced Raman spectroscopy (SERS), due to the unique localized surface plasmon resonance (LSPR) property. This review provides a comprehensive overview of core-shell nanoparticles in the context of fundamental and application aspects of SERS and discusses numerous classes of core-shell nanoparticles with their unique strategies and functions. Further, herein we also introduce the concept of shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) in detail because it overcomes the long-standing limitations of material and morphology generality encountered in traditional SERS. We then explain the SERS-enhancement mechanism with core-shell nanoparticles, as well as three generations of SERS hotspots for surface analysis of materials. To provide a clear view for readers, we summarize various approaches for the synthesis of core-shell nanoparticles and their applications in SERS, such as electrochemistry, bioanalysis, food safety, environmental safety, cultural heritage, materials, catalysis, and energy storage and conversion. Finally, we exemplify about the future developments in new core-shell nanomaterials with different functionalities for SERS and other surface-enhanced spectroscopies.

10.
ACS Appl Mater Interfaces ; 8(49): 33673-33680, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960387

RESUMO

A well-dispersed PtCu alloy nanoparticles (NPs) on three-dimensional nitrogen-doped graphene (PtCu/3D N-G) electrocatalyst has been successfully synthesized by a conventional hydrothermal method combined with a high-efficiency microwave-assisted polyol process. The morphology, composition, and structures are well-characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray powder diffraction, and X-ray photoelectron spectroscopy. Cyclic voltammograms illustrate that the as-prepared PtCu/3D N-G electrocatalyst possesses the larger electrochemical active surface area, lower onset potential, higher current density, and better tolerance to CO poisoning than PtCu NPs on reduced graphene oxide and XC-72 carbon black in acid solution. In addition, long-time chronoamperometry reveals that the PtCu/3D N-G catalyst exhibits excellent stability even longer than 60 min toward acid methanol electrooxidation. The remarkably enhanced performance is related to the combined effects of uniformly interconnected three-dimensional porous graphene networks, nitrogen doping, modified Pt alloy NPs, and strong binding force between Pt alloy NPs and 3D N-G structures.

11.
Analyst ; 141(12): 3925, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27082242

RESUMO

Correction for 'Shell-isolated nanoparticle-enhanced Raman spectroscopy study of the adsorption behaviour of DNA bases on Au(111) electrode surfaces' by Bao-Ying Wen et al., Analyst, 2016, DOI: 10.1039/c6an00180g.

12.
Analyst ; 141(12): 3731-6, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27001527

RESUMO

For the first time, we used the electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy (EC-SHINERS) technique to in situ characterize the adsorption behaviour of four DNA bases (adenine, guanine, thymine, and cytosine) on atomically flat Au(111) electrode surfaces. The spectroscopic results of the various molecules reveal similar features, such as the adsorption-induced reconstruction of the Au(111) surface and the drastic Raman intensity reduction of the ring breathing modes after the lifting reconstruction. As a preliminary study of the photo-induced charge transfer (PICT) mechanism, the in situ spectroscopic results obtained on single crystal surfaces are excellently illustrated with electrochemical data.


Assuntos
DNA/química , Ouro , Nanopartículas , Análise Espectral Raman , Adsorção , Eletrodos
13.
Nanoscale ; 8(5): 2951-9, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26782014

RESUMO

Nanostructures with symmetry breaking can allow the coupling between dark and bright plasmon modes to induce strong Fano resonance. However, it is still a daunting challenge to prepare bottom-up self-assembled subwavelength asymmetric nanostructures with appropriate gaps between the nanostructures especially below 5 nm in solution. Here we present a viable self-assembly method to prepare symmetry-breaking nanostructures consisting of Ag nanocubes and Au nanospheres both with tunable size (90-250 nm for Au nanospheres; 100-160 nm for Ag nanocubes) and meanwhile control the nanogaps through ultrathin silica shells of 1-5 nm thickness. The Raman tag of 4-mercaptobenzoic acid (MBA) assists the self-assembly process and endows the subwavelength asymmetric nanostructures with surface-enhanced Raman scattering (SERS) activity. Moreover, thick silica shells (above 50 nm thickness) can be coated on the self-assembled nanostructures in situ to stabilize the whole nanostructures, paving the way toward bioapplications. Single particle scattering spectroscopy with a 360° polarization resolution is performed on individual Ag nanocube and Au nanosphere dimers, correlated with high-resolution TEM characterization. The asymmetric dimers exhibit strong configuration and polarization dependence Fano resonance properties. Overall, the solution-based self-assembly method reported here is opening up new opportunities to prepare diverse multicomponent nanomaterials with optimal performance.

14.
J Am Chem Soc ; 137(43): 13784-7, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26485195

RESUMO

Silver is an ideal candidate for surface plasmon resonance (SPR)-based applications because of its great optical cross-section in the visible region. However, the uses of Ag in plasmon-enhanced spectroscopies have been limited due to their interference via direct contact with analytes, the poor chemical stability, and the Ag(+) release phenomenon. Herein, we report a facile chemical method to prepare shell-isolated Ag nanoparticle/tip. The as-prepared nanostructures exhibit an excellent chemical stability and plasmonic property in plasmon-enhanced spectroscopies for more than one year. It also features an alternative plasmon-mediated photocatalysis pathway by smartly blocking "hot" electrons. Astonishingly, the shell-isolated Ag nanoparticles (Ag SHINs), as "smart plasmonic dusts", reveal a ∼1000-fold ensemble enhancement of rhodamine isothiocyanate (RITC) on a quartz substrate in surface-enhanced fluorescence. The presented "smart" Ag nanostructures offer a unique way for the promotion of ultrahigh sensitivity and reliability in plasmon-enhanced spectroscopies.

15.
J Am Chem Soc ; 137(24): 7648-51, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26052930

RESUMO

Identifying the intermediate species in an electrocatalytic reaction can provide a great opportunity to understand the reaction mechanism and fabricate a better catalyst. However, the direct observation of intermediate species at a single crystal surface is a daunting challenge for spectroscopic techniques. In this work, electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy (EC-SHINERS) is utilized to in situ monitor the electrooxidation processes at atomically flat Au(hkl) single crystal electrode surfaces. We systematically explored the effects of crystallographic orientation, pH value, and anion on electrochemical behavior of intermediate (AuOH/AuO) species. The experimental results are well correlated with our periodic density functional theory calculations and corroborate the long-standing speculation based on theoretical calculations in previous electrochemical studies. The presented in situ electrochemical SHINERS technique offers a unique way for a real-time investigation of an electrocatalytic reaction pathway at various well-defined noble metal surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA