Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 41(2): 111475, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36223752

RESUMO

Epithelial cell divisions are coordinated with cell loss to preserve epithelial integrity. However, how epithelia adapt their rate of cell division to changes in cell number, for instance during homeostatic turnover or wounding, is not well understood. Here, we show that epithelial cells sense local cell density through mechanosensitive E-cadherin adhesions to control G2/M cell-cycle progression. As local cell density increases, tensile forces on E-cadherin adhesions are reduced, which prompts the accumulation of the G2 checkpoint kinase Wee1 and downstream inhibitory phosphorylation of Cdk1. Consequently, dense epithelia contain a pool of cells that are temporarily halted in G2 phase. These cells are readily triggered to divide following epithelial wounding due to the consequent increase in intercellular forces and resulting degradation of Wee1. Our data collectively show that epithelial cell division is controlled by a mechanical G2 checkpoint, which is regulated by cell-density-dependent intercellular forces sensed and transduced by E-cadherin adhesions.


Assuntos
Caderinas , Células Epiteliais , Caderinas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Células Epiteliais/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular , Mitose , Fosforilação
2.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34301871

RESUMO

Cadherin cell-cell adhesion proteins play key roles in tissue morphogenesis and wound healing. Cadherin ectodomains bind in two conformations, X-dimers and strand-swap dimers, with different adhesive properties. However, the mechanisms by which cells regulate ectodomain conformation are unknown. Cadherin intracellular regions associate with several actin-binding proteins including vinculin, which are believed to tune cell-cell adhesion by remodeling the actin cytoskeleton. Here, we show at the single-molecule level, that vinculin association with the cadherin cytoplasmic region allosterically converts weak X-dimers into strong strand-swap dimers and that this process is mediated by myosin II-dependent changes in cytoskeletal tension. We also show that in epithelial cells, ∼70% of apical cadherins exist as strand-swap dimers while the remaining form X-dimers, providing two cadherin pools with different adhesive properties. Our results demonstrate the inside-out regulation of cadherin conformation and establish a mechanistic role for vinculin in this process.


Assuntos
Caderinas/química , Caderinas/metabolismo , Actinas/metabolismo , Animais , Adesão Celular , Citoesqueleto , Cães , Células Madin Darby de Rim Canino , Miosina Tipo II/metabolismo , Ligação Proteica , Vinculina/metabolismo
3.
Dev Cell ; 53(3): 263-271.e6, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32275886

RESUMO

Symmetry breaking is an essential step in cell differentiation and early embryonic development. However, the molecular cues that trigger symmetry breaking remain largely unknown. Here, we show that mitochondrial H2O2 acts as a symmetry-breaking cue in the C. elegans zygote. We find that symmetry breaking is marked by a local H2O2 increase and coincides with a relocation of mitochondria to the cell cortex. Lowering endogenous H2O2 levels delays the onset of symmetry breaking, while artificially targeting mitochondria to the cellular cortex using a light-induced heterodimerization technique is sufficient to initiate symmetry breaking in a H2O2-dependent manner. In wild-type development, both sperm and maternal mitochondria contribute to symmetry breaking. Our findings reveal that mitochondrial H2O2-signaling promotes the onset of polarization, a fundamental process in development and cell differentiation, and this is achieved by both mitochondrial redistribution and differential H2O2-production.


Assuntos
Padronização Corporal/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Embrião não Mamífero/citologia , Peróxido de Hidrogênio/farmacologia , Mitocôndrias/metabolismo , Zigoto/citologia , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Polaridade Celular , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Oxidantes/farmacologia , Zigoto/efeitos dos fármacos , Zigoto/metabolismo
4.
Small GTPases ; 11(5): 346-353, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-29388865

RESUMO

Epac1 and Rap1 mediate cAMP-induced tightening of endothelial junctions. We have previously found that one of the mechanisms is the inhibition of Rho-mediated tension in radial stress fibers by recruiting the RhoGAP ArhGAP29 in a complex containing the Rap1 effectors Rasip1 and Radil. However, other mechanisms have been proposed as well, most notably the induction of tension in circumferential actin cables by Cdc42 and its GEF FGD5. Here, we have investigated how Rap1 controls FGD5/Cdc42 and how this interconnects with Radil/Rasip1/ArhGAP29. Using endothelial barrier measurements, we show that Rho inhibition is not sufficient to explain the barrier stimulating effect of Rap1. Indeed, Cdc42-mediated tension is induced at cell-cell contacts upon Rap1 activation and this is required for endothelial barrier function. Depletion of potential Rap1 effectors identifies AF6 to mediate Rap1 enhanced tension and concomitant Rho-independent barrier function. When overexpressed in HEK293T cells, AF6 is found in a complex with FGD5 and Radil. From these results we conclude that Rap1 utilizes multiple pathways to control tightening of endothelial junctions, possibly through a multiprotein effector complex, in which AF6 functions to induce tension in circumferential actin cables.


Assuntos
Células Endoteliais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Cinesinas/metabolismo , Miosinas/metabolismo , Junções Íntimas/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Células Cultivadas , Células HEK293 , Humanos
5.
F1000Res ; 82019.
Artigo em Inglês | MEDLINE | ID: mdl-31327995

RESUMO

Mechanical forces drive the remodeling of tissues during morphogenesis. This relies on the transmission of forces between cells by cadherin-based adherens junctions, which couple the force-generating actomyosin cytoskeletons of neighboring cells. Moreover, components of cadherin adhesions adopt force-dependent conformations that induce changes in the composition of adherens junctions, enabling transduction of mechanical forces into an intracellular response. Cadherin mechanotransduction can mediate reinforcement of cell-cell adhesions to withstand forces but also induce biochemical signaling to regulate cell behavior or direct remodeling of cell-cell adhesions to enable cell rearrangements. By transmission and transduction of mechanical forces, cadherin adhesions coordinate cellular behaviors underlying morphogenetic processes of collective cell migration, cell division, and cell intercalation. Here, we review recent advances in our understanding of this central role of cadherin adhesions in force-dependent regulation of morphogenesis.


Assuntos
Junções Aderentes , Caderinas , Adesão Celular , Mecanotransdução Celular , Caderinas/fisiologia , Morfogênese
6.
Cell Adh Migr ; 8(2): 100-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24714377

RESUMO

The small G-protein Rap1 plays an important role in the regulation of endothelial barrier function, a process controlled largely by cellâ€"cell adhesions and their connection to the actin cytoskeleton. During the various stages of barrier dynamics, different guanine nucleotide exchange factors (GEFs) control Rap1 activity, indicating that Rap1 integrates multiple input signals. Once activated, Rap1 induces numerous signaling cascades, together responsible for the increased endothelial barrier function. Most notably, Rap1 activation results in the inhibition of Rho to decrease radial stress fibers and the activation of Cdc42 to increase junctional actin. This implies that Rap regulates endothelial barrier function by dual control of cytoskeletal tension. The molecular details of the signaling pathways are becoming to be elucidated.


Assuntos
Citoesqueleto de Actina/metabolismo , Adesão Celular/genética , Células Endoteliais/metabolismo , Proteínas de Ligação a Telômeros/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína KRIT1 , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Complexo Shelterina , Transdução de Sinais/genética , Fibras de Estresse/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
7.
Proc Natl Acad Sci U S A ; 110(28): 11427-32, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23798437

RESUMO

Rap1 is a small GTPase regulating cell-cell adhesion, cell-matrix adhesion, and actin rearrangements, all processes dynamically coordinated during cell spreading and endothelial barrier function. Here, we identify the adaptor protein ras-interacting protein 1 (Rasip1) as a Rap1-effector involved in cell spreading and endothelial barrier function. Using Förster resonance energy transfer, we show that Rasip1 interacts with active Rap1 in a cellular context. Rasip1 mediates Rap1-induced cell spreading through its interaction partner Rho GTPase-activating protein 29 (ArhGAP29), a GTPase activating protein for Rho proteins. Accordingly, the Rap1-Rasip1 complex induces cell spreading by inhibiting Rho signaling. The Rasip1-ArhGAP29 pathway also functions in Rap1-mediated regulation of endothelial junctions, which controls endothelial barrier function. In this process, Rasip1 cooperates with its close relative ras-association and dilute domain-containing protein (Radil) to inhibit Rho-mediated stress fiber formation and induces junctional tightening. These results reveal an effector pathway for Rap1 in the modulation of Rho signaling and actin dynamics, through which Rap1 modulates endothelial barrier function.


Assuntos
Endotélio Vascular/fisiologia , Proteínas Ativadoras de GTPase/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas rap1 de Ligação ao GTP/fisiologia , Células Cultivadas , Endotélio Vascular/citologia , Humanos , Ligação Proteica , Transdução de Sinais
8.
PLoS One ; 8(2): e57903, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23469100

RESUMO

Rap1 and Rap2 are closely related proteins of the Ras family of small G-proteins. Rap1 is well known to regulate cell-cell adhesion. Here, we have analysed the effect of Rap-mediated signalling on endothelial permeability using electrical impedance measurements of HUVEC monolayers and subsequent determination of the barrier resistance, which is a measure for the ease with which ions can pass cell junctions. In line with its well-established effect on cell-cell junctions, depletion of Rap1 decreases, whereas activation of Rap1 increases barrier resistance. Despite its high sequence homology with Rap1, depletion of Rap2 has an opposite, enhancing, effect on barrier resistance. This effect can be mimicked by depletion of the Rap2 specific activator RasGEF1C and the Rap2 effector MAP4K4, establishing Rap2 signalling as an independent pathway controlling barrier resistance. As simultaneous depletion or activation of both Rap1 and Rap2 results in a barrier resistance comparable to control cells, Rap1 and Rap2 control barrier resistance in a reciprocal manner. This Rap1-antagonizing effect of Rap2 is established independent of junctional actin formation. These data establish that endothelial barrier resistance is determined by the combined antagonistic actions of Rap1 and Rap2.


Assuntos
Endotélio/metabolismo , Proteínas rap de Ligação ao GTP/antagonistas & inibidores , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rap1 de Ligação ao GTP/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , RNA Interferente Pequeno/genética , Proteínas rap de Ligação ao GTP/deficiência , Proteínas rap de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/deficiência , Proteínas rap1 de Ligação ao GTP/genética
9.
Sci Signal ; 5(212): pe6, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22355186

RESUMO

Plexins are transmembrane receptors for semaphorins that serve as guidance cues for neurite outgrowth. The intracellular region of plexins contains a guanosine triphosphatase (GTPase)-activating protein (GAP) domain for Ras. New evidence shows that the GAP activity is specific for Rap proteins, small GTPases involved in the regulation of processes that are potentially important for axon guidance, including cell adhesion and migration. Semaphorin-induced dimerization stimulates plexin GAP activity, thereby locally inhibiting Rap1 and enabling neurite retraction. This important finding connects semaphorin signaling to Rap-mediated signaling and is another intriguing example of how small GTPases are used for spatial and temporal control of cell behavior.


Assuntos
Axônios/fisiologia , Moléculas de Adesão Celular/metabolismo , Modelos Biológicos , Fatores de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Semaforinas/metabolismo , Transdução de Sinais/fisiologia , Proteínas rap1 de Ligação ao GTP/metabolismo , Animais , Transdução de Sinais/genética
10.
Cell Signal ; 23(12): 2056-64, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21840392

RESUMO

Epac1 and its effector Rap1 are important mediators of cAMP induced tightening of endothelial junctions and consequential increased barrier function. We have investigated the involvement of Rap1 signalling in basal, unstimulated, barrier function of a confluent monolayer of HUVEC using real time Electric Cell-substrate Impedance Sensing. Depletion of Rap1, but not Epac1, results in a strong decrease in barrier function. This decrease is also observed when cells are depleted of the cAMP independent Rap exchange factors PDZ-GEF1 and 2, showing that PDZ-GEFs are responsible for Rap1 activity in control of basal barrier function. Monolayers of cells depleted of PDZ-GEF or Rap1 show an irregular, zipper-like organization of VE-cadherin and live imaging of VE-cadherin-GFP reveals enhanced junction motility upon depletion of PDZ-GEF or Rap1. Importantly, activation of Epac1 increases the formation of cortical actin bundles at the cell-cell junctions, inhibits junction motility and restores barrier function of PDZ-GEFs depleted, but not Rap1 depleted cells. We conclude that PDZ-GEF activates Rap1 under resting conditions to stabilize cell-cell junctions and maintain basal integrity. Activation of Rap1 by cAMP/Epac1 induces junctional actin to further tighten cell-cell contacts.


Assuntos
Junções Aderentes/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , ADP Ribose Transferases/farmacologia , Actinas/metabolismo , Antígenos CD/metabolismo , Toxinas Botulínicas/farmacologia , Caderinas/metabolismo , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Impedância Elétrica , Endotélio Vascular/citologia , Endotélio Vascular/fisiologia , Técnicas de Silenciamento de Genes , Fatores de Troca do Nucleotídeo Guanina/agonistas , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Microscopia de Fluorescência , Proteínas do Tecido Nervoso/genética , Interferência de RNA , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética , Imagem com Lapso de Tempo , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Proteínas rho de Ligação ao GTP/metabolismo
11.
Biochim Biophys Acta ; 1788(4): 790-6, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19159611

RESUMO

Rap proteins are Ras-like small GTP-binding proteins that amongst others are involved in the control of cell-cell and cell-matrix adhesion. Several Rap guanine nucleotide exchange factors (RapGEFs) function to activate Rap. These multi-domain proteins, which include C3G, Epacs, PDZ-GEFs, RapGRPs and DOCK4, are regulated by various different stimuli and may function at different levels in junction formation. Downstream of Rap, a number of effector proteins have been implicated in junctional control, most notably the adaptor proteins AF6 and KRIT/CCM1. In this review, we will highlight the latest findings on the Rap signaling network in the control of epithelial and endothelial cell-cell junctions.


Assuntos
Junções Aderentes/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Transdução de Sinais/fisiologia , Junções Íntimas/fisiologia , Proteínas rap1 de Ligação ao GTP/fisiologia , Animais , Células Endoteliais/ultraestrutura , Humanos , Estrutura Terciária de Proteína
12.
Cell Signal ; 20(9): 1608-15, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18585005

RESUMO

The small G-protein Rap1 is a critical regulator of cell-cell contacts and is activated by the remodeling of adherens junctions. Here we identify the Rap1 guanine nucleotide exchange factor PDZ-GEF2 as an upstream activator of Rap1 required for the maturation of adherens junctions in the lung carcinoma cells A549. Knockdown of PDZ-GEF2 results in the persistence of adhesion zippers at cell-cell contacts. Activation of Rap1A rescues junction maturation in absence of PDZ-GEF2, demonstrating that Rap1A is downstream of PDZ-GEF2 in this process. Moreover, depletion of Rap1A, but not Rap1B, impairs adherens junction maturation. siRNA for PDZ-GEF2 also lowers the levels of E-cadherin, an effect that can be mimicked by Rap1B, but not Rap1A siRNA. Since junctions in Rap1B depleted cells have a mature appearance, these data suggest that PDZ-GEF2 activates Rap1A and Rap1B to perform different functions. Our results present the first direct evidence that PDZ-GEF2 plays a critical role in the maturation of adherens junctions.


Assuntos
Junções Aderentes/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Junções Aderentes/ultraestrutura , Caderinas/metabolismo , Adesão Celular , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Humanos , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo
14.
EMBO J ; 26(1): 102-12, 2007 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-17159902

RESUMO

MDM2 (HDM2) is a ubiquitin ligase that can target the p53 tumor suppressor protein for degradation. The RING domain is essential for the E3 activity of MDM2, and we show here that the extreme C-terminal tail of MDM2 is also critical for efficient E3 activity. Loss of E3 function in MDM2 mutants deleted of the C-terminal tail correlated with a failure of these mutants to oligomerize with MDM2, or with the related protein MDMX (HDMX). However, MDM2 containing point mutations within the C-terminus that inactivated E3 function retained the ability to oligomerize with the wild-type MDM2 RING domain and MDMX, and our results indicate that oligomers containing both wild-type MDM2 and a C-terminal mutant protein retain E3 function both in auto-degradation and degradation of p53. Interestingly, the E3 activity of C-terminal point mutants of MDM2 can also be supported by interaction with wild-type MDMX, suggesting that MDMX can directly contribute to E3 function.


Assuntos
Proteínas Nucleares/química , Proteínas Nucleares/fisiologia , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/fisiologia , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Humanos , Dados de Sequência Molecular , Mutagênese , Mutação , Mutação Puntual , Ligação Proteica , Estrutura Terciária de Proteína , Transfecção , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/química
15.
Cardiovasc Res ; 61(3): 414-26, 2004 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-14962473

RESUMO

Many changes occur during reperfusion of the myocardium after ischemic damage. Necrosis and apoptosis appear to be ongoing during ischemia, while apoptosis is boosted by the reperfusion event. In the past 10 years, distinct intracellular pathways important for hypertrophy, apoptosis, cardiac failure, ischemic preconditioning and reperfusion damage have been recognized. The eventual response of the cardiomyocyte will depend on energy and time available as well as changes in pH and ion handling and the delicate balance of activation of signaling molecules and transcription factors. There is agreement on the central role of mitochondria and nitric oxide (NO) in programmed cell death. However, although many groups analyzed the contribution of NO to cell death, still the circumstances and levels required for cardioprotection or death are unclear. Growth factors, cytokines, and downstream signaling molecules have been shown to influence programmed cell death through mechanisms reminiscent of preconditioning. Here, the role of apoptosis in ischemia reperfusion-related cell death is reviewed. Important data have been obtained in isolated cells, intact hearts and intact animals. Both pharmacological as well as genetic interventions are discussed. Proof for apoptosis in man post-myocardial infarction (MI) treated through primary Percutaneous Trans-luminal Coronary Angioplasty or other reperfusion therapy is reviewed. Finally, the currently available quantification methods for apoptosis post-MI are mentioned.


Assuntos
Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Animais , Anexina A5 , Apoptose , Caspases/metabolismo , Ativação Enzimática , Humanos , Precondicionamento Isquêmico Miocárdico , Isquemia Miocárdica/diagnóstico , Isquemia Miocárdica/enzimologia , Isquemia Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/enzimologia , Tomografia Computadorizada de Emissão de Fóton Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA