Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39073714

RESUMO

The pollination of several crops, as well as wild plants, depends on honeybees. To get the nutrients required for growth and survival, honeybee colonies are dependent on pollen supply. Bee pollen (BP) is partially packed in honeycomb cells and processed into beebread (BB) by microbial metabolism. The composition of pollen is highly variable and is mainly dependent on ecological habitat, geographical origin, honey plants, climatic conditions, and seasonal variations. Although there are important differences between the BP and the BB, little comparative chemical and microbiological data on this topic exists in the literature, particularly for samples with the same origin. In this study, BP and BB pollen samples were collected from two apiaries located in the Campania and Molise regions of Southern Italy. Phenolic profiles were detected via HPLC, while antioxidant activity was determined by ABTS·+ and DPPH· assay. The next-generation sequencing (NGS) based on RNA analysis of 16S (rRNA) and internal transcribed spacer (ITS2) regions were used to investigate the microbial community (bacteria and fungi) and botanical origin of the BP and BB. Chemical analysis showed a higher content of flavonols in BP (rutin, myricetin, quercetin, and kaempferol), while in BB there was a higher content of phenolic acids. The NGS analysis revealed that the microbial communities and pollen sources are dependent on the geographical location of apiaries. In addition, diversity was highlighted between the microbial communities present in the BP and BB samples collected from each apiary.

2.
Front Microbiol ; 15: 1399968, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725687

RESUMO

Grape-associated microbial community is influenced by a combination of viticultural, climatic, pedological and anthropological factors, collectively known as terroir. Therefore, grapes of the same cultivar grown in different areas can be appreciated for their distinctive biogeographic characteristics. In our previous study, we showed that the phenotypic response of Aglianico and Cabernet grapevines from Molise and Sicily regions is significantly influenced by the prevailing pedoclimatic conditions, particularly soil physical properties. However, the scale at which microbial communities differ could be important in clarifying the concept of terroir, including whether it is linked to the grape variety present in a particular vineyard. To explore this further, in the research presented here, a comparative study on the fungal communities inhabiting the berry surfaces of Cabernet and Aglianico cultivars was conducted on different vineyards located in Southern Italy (Molise, Sicily and Campania regions, the first two of which had been involved in our previous study) by using high-throughput sequencing (HTS) and multivariate data analysis. The descriptive approach through relative abundance analysis showed the most abundant phyla (Ascomycota, Basidiomycota, and Chytridiomycota), families (Cladosporiaceae, Saccotheciaceae, Pleosporaceae, Saccharomycodaceae, Sporidiobolaceae, Didymellaceae, Filobasidiaceae, Bulleribasidiaceae, and Saccharomycetaceae) and genera (Cladosporium, Aureobasidium, Alternaria, Stemphylium and Filobasidium) detected on grape berries. The multivariate data analysis performed by using different packages (phyloseq, Vegan, mixOmics, microbiomeMarker and ggplot2) highlighted that the variable "vineyard location" significantly affect the fungal community, while the variable "grape variety" has no significant effect. Thus, some taxa are found to be part of specific vineyard ecosystems rather than specific grape varieties, giving additional information on the microbial contribution to wine quality, thanks to the presence of fermentative yeasts or, conversely, to the involvement in negative or detrimental roles, due to the presence of grape-deriving fungi implied in the spoilage of wine or in grapevine pathogenesis. In this connection, the main functions of core taxa fungi, whose role in the vineyard environment is still poorly understood, are also described.

3.
Viruses ; 16(3)2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38543736

RESUMO

The COVID-19 pandemic has profoundly impacted global health, leading to extensive research focused on developing strategies to enhance outbreak response and mitigate the disease's severity. In the aftermath of the pandemic, attention has shifted towards understanding and addressing long-term health implications, particularly in individuals experiencing persistent symptoms, known as long COVID. Research into potential interventions to alleviate long COVID symptoms has intensified, with a focus on strategies to support immune function and mitigate inflammation. One area of interest is the gut microbiota, which plays a crucial role in regulating immune responses and maintaining overall health. Prebiotics and probiotics, known for their ability to modulate the gut microbiota, have emerged as potential therapeutic agents in bolstering immune function and reducing inflammation. This review delves into the intricate relationship between long COVID, the gut microbiota, and immune function, with a specific focus on the role of prebiotics and probiotics. We examine the immune response to long COVID, emphasizing the importance of inflammation and immune regulation in the persistence of symptoms. The potential of probiotics in modulating immune responses, including their mechanisms in combating viral infections such as COVID-19, is discussed in detail. Clinical evidence supporting the use of probiotics in managing long COVID symptoms is summarized, highlighting their role as adjunctive therapy in addressing various aspects of SARS-CoV-2 infection and its aftermath.


Assuntos
COVID-19 , Probióticos , Humanos , Prebióticos , COVID-19/terapia , Síndrome de COVID-19 Pós-Aguda , Pandemias , SARS-CoV-2 , Probióticos/uso terapêutico , Inflamação
4.
Front Microbiol ; 13: 900876, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558107

RESUMO

The present study evaluated the fungal contamination of ready-to-eat dried hazelnuts considering for the first time the application of the same condition drying process of several hazelnut cultivars from different boreal hemisphere areas. Fifty lots of hazelnuts (Corylus avellana), belonging to eight cultivars from seven regions in four countries, were analyzed for fungal microbiota, describing both load levels and species diversity. For this purpose, a polyphasic approach consisting of morphological examination (optical and scanning electron microscope observation) and molecular characterization [PCR-DGGE analysis and sequence analyses of the internal transcribed spacer (ITS)] was performed. The results show that different fungal populations occur in dried hazelnuts regardless of their geographical area of production. Although some varieties appear to be relatively less susceptible, species related to Aspergillus, such as A. commune and A. ochraceus, Penicillium, including P. commune, P. solitum, and P. expansum, and Rhizopus, for instance, R. stolonifer and R. oryzae, have generally been found. A related character "hazelnut cultivar-fungi" was found for species related to the genera Trichoderma and Fusarium, including F. oxyxporum, F. solani, and F. falciforme. All 14 species found are known to host pathogenic strains. Therefore, their presence in a ready-to-eat product, such as dried hazelnuts, can pose a real danger to the consumer. Based on these considerations, the development of new protective strategies seems highly desirable. The species-level description of the contaminating fungal community acquired through this study is the starting point for the development of tailor-made protective biotechnologies.

5.
Foods ; 9(11)2020 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33113800

RESUMO

Apilactobacillus kunkeei is an insect symbiont with documented beneficial effects on the health of honeybees. It belongs to fructophilic lactic acid bacteria (FLAB), a subgroup of lactic acid bacteria (LAB) notably recognized for their safe status. This fact, together with its recurrent isolation from hive products that are traditionally part of the human diet, suggests its possible safe use as human probiotic. Our data concerning three strains of A. kunkeei isolated from bee bread and honeybee gut highlighted several interesting features, such as the presence of beneficial enzymes (ß-glucosidase, ß-galactosidase and leucine arylamidase), the low antibiotic resistance, the ability to inhibit P. aeruginosa and, for one tested strain, E. faecalis, and an excellent viability in presence of high sugar concentrations, especially for one strain tested in sugar syrup stored at 4 °C for 30 d. This datum is particularly stimulating, since it demonstrates that selected strains of A. kunkeei can be used for the probiotication of fruit preparations, which are often used in the diet of hospitalized and immunocompromised patients. Finally, we tested for the first time the survival of strains belonging to the species A. kunkeei during simulated gastrointestinal transit, detecting a similar if not a better performance than that showed by Lacticaseibacillus rhamnosus GG, used as probiotic control in each trial.

6.
Microorganisms ; 8(10)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066358

RESUMO

Lactic acid bacteria could positively affect the health of honey bees, including nutritional supplementation, immune system development and pathogen colonization resistance. Based on these considerations the present study evaluated predominant Lactic Acid Bacteria (LAB) species from beebread as well as from the social stomach and midgut of Apis mellifera ligustica honey bee foragers. In detail, for each compartment, the diversity in species and biotypes was ascertained through multiple culture-dependent approaches, consisting of Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE), 16S rRNA gene sequencing and Randomly Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR). The study of a lactic acid bacteria community, performed with PCR-DGGE and sequence analysis targeting the V1-V3 region of the 16S rRNA gene (rDNA), highlighted the presence of a few species, including Apilactobacillus kunkeei, Lactiplantibacillus plantarum, Fructobacillus fructosus, Levilactobacillus brevis and Lactobacillus delbrueckii subsp. lactis. Depending on the different compartments, diverse levels of biodiversity in species were found. Particularly, a very low inter-species biodiversity was detected in the midgut that was prevalently dominated by the presence of Apilactobacillus kunkeei. On the other hand, the beebread was characterized by a reasonable biodiversity showing the presence of five species and the predominance of Apilactobacillus kunkeei, Lactiplantibacillus plantarum and Fructobacillus fructosus. The RAPD-PCR analysis performed on the three predominant species allowed the differentiation into several biotypes for each species. Moreover, a relationship between biotypes and compartments has been detected and each biotype was able to express a specific biochemical profile. The biotypes that populated the social stomach and midgut were able to metabolize sugars considered toxic for bees while those isolated from beebread could contribute to release useful compounds with functional properties. Based on this knowledge, new biotechnological approaches could be developed to improve the health of honey bees and the quality of bee products.

7.
Microorganisms ; 8(7)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664371

RESUMO

The present study, considering for the first time microbiological concerns due to the use of lemon albedo as a fat replacer, aimed at the selection of an anti-Listeria strain to be used as protective culture in low-fat southern Italian fermented sausages. In fact, these kinds of products require appropriate bio-protective strategies to avoid risks due to Listeria monocytogenes. Sixty-seven Lactiplantibacillus plantarum strains isolated from diverse sources were screened for their antimicrobial activity and their interaction with starter strains (Latilactobacillus sakei 152 and Staphylococcus xylosus MVS9). Lactiplantibacillus plantarum Lpls100, highlighting both listericidal activity and the ability to promote Staphylococcus xylosus MVS9 growth, was used as a protective strain in low-fat fermented sausages prepared with lemon albedo as a fat replacer. The effect of the albedo and the protective strain on the fermentation process and the final quality was ascertained. Results highlighted that the use of the albedo did not affect the growth of starter strains and enhanced some quality features, such as fatty acid profiles and certain sensory attributes. However, the albedo also produced a slow decrease in water activity, compromising the microbial quality. The anti-Listeria strain, enhancing coagulase negative cocci growth and exerting antimicrobial activity, avoided the inconveniences caused by the use of the albedo. Moreover, the anti-Listeria effectiveness was assessed through a challenge test using a Listeria cocktail. The study revealed that Lactiplantibacillus plantarum Lpls100, regardless of the presence of the albedo, assures a prompt inhibition of Listeria spp. Therefore, its use could be an important contribution to the quality of low-fat fermented sausages.

8.
Foods ; 9(6)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560415

RESUMO

Biofilm life-style of Lactobacillus plantarum (L. plantarum) strains was evaluated in vitro as a new and suitable biotechnological strategy to assure L-malic acid conversion in wine stress conditions. Sixty-eight L. plantarum strains isolated from diverse sources were assessed for their ability to form biofilm in acid (pH 3.5 or 3.2) or in ethanol (12% or 14%) stress conditions. The effect of incubation times (24 and 72 h) on the biofilm formation was evaluated. The study highlighted that, regardless of isolation source and stress conditions, the ability to form biofilm was strain-dependent. Specifically, two clusters, formed by high and low biofilm producer strains, were identified. Among high producer strains, L. plantarum Lpls22 was chosen as the highest producer strain and cultivated in planktonic form or in biofilm using oak supports. Model wines at 12% of ethanol and pH 3.5 or 3.2 were used to assess planktonic and biofilm cells survival and to evaluate the effect of biofilm on L-malic acid conversion. For cells in planktonic form, a strong survival decay was detected. In contrast, cells in biofilm life-style showed high resistance, assuring a prompt and complete L-malic acid conversion.

9.
Microorganisms ; 8(4)2020 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-32260418

RESUMO

Malolactic fermentation (MLF) is a biological process that, in addition to deacidifying, also improves biological stability and changes the chemical and sensorial characteristics of wines. However, multiple biotic and abiotic factors, present in must and wine, make the onset and completion of MLF by indigenous malolactic bacteria or added commercial starters difficult. This work illustrates the metabolic and fermentative dynamics in winemaking Fiano wine, using a commercial starter of Saccharomyces cerevisiae and the selected strain Lactobacillus plantarum M10. In particular, an inoculum of malolactic starter was assessed at the beginning of alcoholic fermentation (early co-inoculum), at half alcoholic fermentation (late co-inoculum), and post alcoholic fermentation (sequential inoculum). The malolactic starter, before its use, was pre-adapted in sub-optimal growth conditions (pH 5.0). In sequential inoculum of the Lb. plantarum M10, even in a wine with high acidity, has confirmed its good technological and enzymatic characteristics, completing the MLF and enriching the wine with desirable volatile compounds.

10.
Int J Food Microbiol ; 298: 51-62, 2019 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-30925356

RESUMO

Lactic acid bacteria (LAB) are used as starter, adjunct and/or probiotic cultures in fermented foods. Several species are recognized as oxygen-tolerant anaerobes, and aerobic and respiratory cultivations may provide them with physiological and technological benefits. In this light, mechanisms involved in the adaptation to aerobic and respiratory (supplementation with heme and menaquinone) growth conditions of the O2-tolerant strain Lactobacillus casei N87 were investigated by proteomics. In fact, in this bacterial strain, respiration induced an increase in biomass yield and robustness to oxidative, long-term starvation and freeze-drying stresses, while high concentrations of dissolved O2 (dO2 60%) negatively affected its growth and cell survival. Proteomic results well paralleled with physiological and metabolic features and clearly showed that aerobic life-style led to a higher abundance of several proteins involved in carbohydrate metabolism and stress response mechanisms and, concurrently, impaired the biosynthesis of proteins involved in nucleic acid formation and translation processes, thus providing evidence at molecular level of the significant damage to L.casei N87 fitness. On the contrary, the activation of respiratory pathways due to heme and menaquinone supplementation, led to a decreased amount of chaperones and other stress related proteins. These findings confirmed that respiration reduced oxidative stress condition, allowing to positively modulate the central carbohydrate and energy metabolism and improve growth and stress tolerance features. Results of this study could be potentially functional to develop competitive adjunct and probiotic cultures effectively focused on the improvement of quality of fermented foods and the promotion of human health.


Assuntos
Aerobiose/fisiologia , Lacticaseibacillus casei/fisiologia , Proteoma/fisiologia , Heme/farmacologia , Lacticaseibacillus casei/efeitos dos fármacos , Lacticaseibacillus casei/genética , Oxirredução , Estresse Oxidativo/fisiologia , Oxigênio/farmacologia , Probióticos , Proteoma/efeitos dos fármacos , Proteômica
11.
World J Microbiol Biotechnol ; 34(11): 161, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30357477

RESUMO

In this study, the effect of sequential inoculation with non-Saccharomyces (Hanseniaspora guilliermondii) and Saccharomyces cerevisiae yeast on the distinctive characteristics of the Campanino white wine was investigated. For this purpose, three independent winemaking experiments were carried out on an industrial scale (batches A, B and C). In detail, the first one was carried out using the sequential inoculation technique while the other two, using a S. cerevisiae single-strain starter or no inoculation representing the control batches. Microbiological and chemical parameters and sensorial profiles of the wines were defined. Interestingly, the results showed that when sequential cultures (H. guilliermondii in a sequential mixture with S. cerevisiae) were used, a better wine aroma and quality was observed. More specifically, the wine obtained by sequential inoculation showed lower acetic acid values and enhanced volatile profiles than the wine from the control batches. Finally, sensorial analysis confirmed that the sequential cultures led to an improvement in wine flavour. Therefore, results suggest that the sequential inoculation using non-Saccharomyces and Saccharomyces yeast represents a biotechnological practice that can improve the quality features of traditional white wine. It has been shown for the first time that on an industrial scale H. guilliermondii could be used in sequential inoculum with S. cerevisiae in making white Campanino wine.


Assuntos
Hanseniaspora/crescimento & desenvolvimento , Microbiologia Industrial/métodos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Vinho/microbiologia , Ácido Acético , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Meios de Cultura/metabolismo , Fermentação , Hanseniaspora/metabolismo , Cinética , Odorantes , Saccharomyces cerevisiae/metabolismo , Compostos Orgânicos Voláteis/análise
12.
Front Microbiol ; 9: 1373, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29997593

RESUMO

The 3-Phenyllactic acid (PLA) produced by various lactic acid bacteria (LAB) possesses a broad spectrum of antimicrobial activity. In this study, the effect of PLA against Listeria innocua was studied with the aim to obtain additional information about its mechanism of action. The effect of pH on the antilisterial activity of PLA was investigated and a pH-dependent behavior, typical of weak acid, was detected. The antilisterial effect of PLA was firstly compared to that produced by lactic acid (LA) and than to that expressed by phenolic acids (gallic, caffeic, and ferulic acids) evaluating minimum inhibitory concentration (MIC), MBC, and survival kinetic parameters. PLA showed MIC values and death kinetic parameters significantly different from those exhibited by LA and by tested phenolic acids. In particular, the MIC value observed for PLA vs L. innocua resulted lower than that of the other preservative compounds studied herein, and consistent with the quantity generally produced by LAB. Moreover, the effect of PLA and phenolic acids on bacterial surface charge and loss of cellular content resulted different. The overall results highlighted strong differences in the antilisterial mechanism of action among PLA and other compounds such as LA and phenols. Specifically, it is possible to hypothesize that the antilisterial mechanism of action due to PLA is associated with the affinity to cell surface, which contributes to the cellular damage.

13.
Int J Food Microbiol ; 266: 183-189, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29227905

RESUMO

Refrigeration alone or in combination with other technologies represents the main tool used in the last decades to preserve the freshness of black truffles. This is principally due to the delicateness and vulnerability of this edible hypogeous fungus, so that other invasive preservation practices cannot be adopted. However, the proliferation of some microbial species during the cold storage still represents an unsolved problem. Pseudomonads are among the main spoiler bacteria responsible for the deterioration of refrigerated black truffles. Their growth ability at low temperatures requires the use of additional hurdles to prolong the shelf-life of truffles without altering their major features. The use of natural compounds may represent an alternative system for the biocontrol of this kind of product. Specifically, gallic acid (GA) is a phenolic acid naturally present in different foods, whose effectiveness was in vitro demonstrated against Pseudomonas spp. In our study, we reported the antimicrobial activity expressed by GA not only in vitro, using as target bacteria Pseudomonas putida DSMZ 291T, P. fluorescens DSMZ 50090T, P. fragi DSMZ 3456T and Pseudomonas spp. P30-4, previously isolated from black truffles, but also in situ on fresh black truffles stored at 4°C for 28days. Our results showed Minimum Inhibitory Concentrations (MIC) of 2.5mg/mL GA for all tested strains, except for P. fluorescens DSMZ 50090T, having a MIC corresponding to 5mg/mL GA. The Minimum Bactericidal Concentration (MBC) was 10mg/mL for all strains. The analysis of kinetic parameters showed that the survival declined passing from 2.5 to 10mg/mL GA concentrations, with P. fluorescens confirmed to be the most resistant strain. Moreover, images obtained from Scanning Electron Microscopy revealed that Pseudomonas cells were strongly injured by the treatment with GA at 2.5mg/mL concentration, displaying visible pores on the cellular surfaces, absence of flagella and lysis with loss of cytoplasmic material. The storage test performed on fresh black truffles confirmed in situ the GA antimicrobial activity observed in vitro, with a drastic reduction not only of Pseudomonas spp., but also of the other assessed microbial groups, including Enterobacteriaceae and Eumycetes. Finally, sensory analysis established the absence of off-flavours and the preservation of positive features in black truffles treated with 2.5mg/mL GA and stored for 28 d at 4°C. The results obtained in this study suggest that GA is a potential biocontrol tool to decontaminate and preserve fresh black truffles during refrigerated storage.


Assuntos
Ascomicetos , Microbiologia de Alimentos , Conservação de Alimentos/métodos , Ácido Gálico/farmacologia , Pseudomonas/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Enterobacteriaceae/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Pseudomonas/crescimento & desenvolvimento , Refrigeração
14.
Front Microbiol ; 8: 1067, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659890

RESUMO

In our study, we dwelled upon combinations of lactobacilli/prebiotics, considering four different strains belonging to the Lactobacillus rhamnosus species, including Lactobacillus rhamnosus GG (LGG), and different prebiotics often found in commercial synbiotic products, such as inulin, lactulose and polyols mannitol and sorbitol. In the first step of the research, the survival, the growth kinetic parameters and the protein expression of Lb. rhamnosus strains cultivated in presence of the different prebiotics as a unique carbon source were evaluated. In the second step, the influence of pre-cultivation in medium added of metabolizable prebiotics on the strains survival to simulated gastrointestinal (GI) transit, assayed without prebiotics addition, was estimated. Our results showed that the presence in the medium of certain low fermented prebiotics, specific for each strain, represents a stress factor that significantly affects the growth of Lb. rhamnosus strains, inducing the up-regulation of several proteins. In detail, all added prebiotics used as unique carbon source caused a growth retard compared with glucose, as testified by increased values of the lag phase and decreased values of the µmax. Mannitol evidenced intermediate µmax values between those registered with glucose and those detected with the other assayed prebiotics. Moreover, the cultivation with prebiotics induced the over expression of 7 protein bands. Interestingly, we found a correlation between the up-regulation of two specific stress proteins, called P4 (ATP-binding subunit Clpx) and P7 (GrpE), and the death kinetic parameters (resistance and cells viability) registered during the simulated GI transit of strains pre-cultivated with specific, low fermented prebiotics. Specifically, the highest resistance and gastric-vitality scores were highlighted for the strain AT195 when pre-cultivated in presence of sorbitol. Conversely, the lowest values were found in the case of DSM20021 pre-cultivated with mannitol. Among the up-regulated stress proteins, P7 resulted involved in the response to the starvation. Finally, it is possible to conclude that the pre-cultivation with certain prebiotics as a unique carbon source represents a strain-specific, sub-lethal stress able to enhance the resistance of Lb. rhamnosus strains and consequently their viability under simulated GI transit.

15.
Front Microbiol ; 8: 470, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28382030

RESUMO

Forty-two oenological strains of Lb. plantarum were assessed for their response to ethanol and pH values generally encountered in wines. Strains showed a higher variability in the survival when exposed to low pH (3.5 or 3.0) than when exposed to ethanol (10 or 14%). The study allowed to individuate the highest ethanol concentration (8%) and the lowest pH value (4.0) for the growth of strains, even if the maximum specific growth rate (µ max ) resulted significantly reduced by these conditions. Two strains (GT1 and LT11) preadapted to 2% ethanol and cultured up to 14% of ethanol showed a higher growth than those non-preadapted when they were cultivated at 8% of ethanol. The evaluation of the same strains preadapted to low pH values (5.0 and 4.0) and then grown at pH 3.5 or 3.0 showed only for GT1 a sensitive µ max increment when it was cultivated in MRS at pH 3 after a preadaptation to pH 5.0. The survival of GT1 and LT11 was evaluated in Ringer's solution at 14% ethanol after a long-term adaptation in MRS with 2% ethanol or in MRS with 2% ethanol acidified at pH 5.0 (both conditions, BC). Analogously, the survival was evaluated at pH 3.5 after a long-term adaptation in MRS at pH 5.0 or in MRS BC. The impact of the physiologic state (exponential phase vs stationary phase) on the survival was also evaluated. Preadapted cells showed the same behavior of non-preadapted cells only when cultures were recovered in the stationary phase. Mathematical functions were individuated for the description of the survival of GT1 and LT11 in MRS at 14% ethanol or at pH 3.5. Finally, a synthetic wine (SW) was used to assess the behavior of Lb. plantarum GT1 and LT11 preadapted in MRS at 2% ethanol or at pH 5.0 or in BC. Only GT1 preadapted to pH 5.0 and collected in the stationary phase showed constant values of microbial counts after incubation for 15 days at 20°C. In addition, after 15 days the L-malic acid resulted completely degraded and the pH value increased of about 0.3 units.

16.
Int J Food Microbiol ; 242: 132-140, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28006700

RESUMO

The present study evaluated the physico-chemical and microbiological features of Ventricina, considering for the first time the presence of different compartments deriving from the technology of production. In fact meat pieces (pork muscle and fat cut into cubes of about 10-20cm3), mixed with other ingredients and then stuffed into pig bladder, are still distinguishable at the end of the ripening. They appear delimited on the outside by the casing and inside by thin layers consisting of spices (mainly red pepper powder), salt and meat juices. Our results showed that the exterior (portion of the product in contact with the casing), the interstice (area between the different cubes of meat or fat) and the heart (the inner portion of meat cubes) had distinctive values of pH and aw, and a typical microbial progression, so that they can be considered as different ecological niches, here called microenvironments. The study of lactic acid bacteria population, performed with PCR-DGGE and sequence analysis targeting the V1-V3 region of the 16S rRNA gene (rDNA), highlighted the presence of a few species, including Lactobacillus sakei, Lb. plantarum, Weissella hellenica and Leuconostoc mesenteroides. The RAPD-PCR analysis performed on Lb. sakei, recognised as the predominant species, allowed the differentiation into three biotypes, with that characterised by the highest acidifying and proteolytic activities and the highest ability to grow in the presence of sodium chloride prevailing. This leading biotype, detectable in the interstice during the entire ripening period, was isolated in the microenvironments exterior and heart starting from the 30th d of ripening, and it was the sole biotype present at the end of the ripening. The analysis of microenvironments through the scanning electron microscopy (SEM) evidenced the presence of micro-channels, which could favour the microbial flow from the interstice to the exterior and the heart. Moreover, the SEM analysis allowed the detection of biofilms, recognised as responsible for the correct colonisation of the different meat niches.


Assuntos
Latilactobacillus sakei/isolamento & purificação , Produtos da Carne/microbiologia , Animais , DNA Bacteriano/genética , Fermentação , Microbiologia de Alimentos , Itália , Latilactobacillus sakei/classificação , Latilactobacillus sakei/genética , Latilactobacillus sakei/metabolismo , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Suínos
17.
J Dairy Sci ; 99(12): 9521-9533, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27771088

RESUMO

Five protected designation of origin (PDO) Caciocavallo Silano and 6 non-PDO Caciocavallo cheeses, ripened for 6mo and collected in the 5 Italian regions of the PDO area (Apulia, Basilicata, Calabria, Campania, and Molise, Italy), were studied to assess their physico-chemical (pH, acidity, moisture, fat, ash, protein, and free amino acid composition) and microbiological profiles. Analyses evidenced a certain fluctuation of previous parameters among samples regardless of the kind of cheese evaluated (PDO and non-PDO). The PCR-denaturing gradient gel electrophoresis analysis performed on the DNA directly extracted from cheeses gave different results, but a low number of bands was always observed. Only one band, corresponding to the species Streptococcus thermophilus, was detectable in 1 PDO and in 2 non-PDO cheese samples, whose free amino acid content was the lowest. Analyses were repeated on experimental Caciocavallo cheeses. Specifically, 2 productions were made, one mimicking the industrial technology (pasteurized milk and selected starter culture) and one the artisanal technology (raw milk and natural whey starter). Results obtained on experimental cheeses at 6mo of ripening showed that industrial samples had lower amounts of total free amino acids then the artisanal ones (1,188.2 vs. 7,523.67mg/100 g of dry matter). Moreover, the PCR-denaturing gradient gel electrophoresis analysis evidenced the sole presence of S. thermophilus in the case of the industrial technology. These data sustain the hypothesis that, out of 11 cheeses analyzed previously, 1 PDO Caciocavallo Silano and 2 non-PDO Caciocavallo cheeses were obtained with the industrial technology. These results could be of help in the discrimination of PDO products, taking into account that the PDO production regulation does not allow the milk pasteurization, nor the use of selected starters.


Assuntos
Aminoácidos , Queijo/análise , Queijo/microbiologia , Animais , Itália , Leite/microbiologia
18.
J Food Sci ; 81(1): M97-105, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26556435

RESUMO

In the present study, a multiple approach was used to characterize Malpighia punicifolia extract and to evaluate its inhibitory activity against several meat spoilage bacteria. First, volatile fraction, vitamins and phenolic compounds of the extract obtained by supercritical fluid extraction were determined by GC-MS and HPLC. Then, the antimicrobial action of the extract was in vitro evaluated against Pseudomonas putida DSMZ 291(T), Pseudomonas fluorescens DSMZ 50009(T), Pseudomonas fragi DSMZ 3456(T), and Brochothrix thermosphacta DSMZ 20171(T) by the agar well diffusion assay and by the agar dilution test. Based on the results of the minimum inhibitory concentration (MIC) against the assayed bacteria, 4 different concentrations of the extract were used in a challenge test on water buffalo steaks stored for 21 d at 4 °C. Results of chemical analyses showed that M. punicifolia extract is characterized by the presence of several compounds, already described for their antimicrobial (phenolic acids, flavonones, and furanes) and antioxidant (ascorbic acid) properties. The in vitro detection of antimicrobial activities highlighted that the extract, used at 8% concentration, was able to inhibit all the target bacteria. Moreover, very low MIC values (up to 0.025%) were detected. In situ tests, performed on water buffalo steaks treated with the extract in the concentration range 0.025% to 0.05%, showed a strong inhibition of both intentionally inoculated bacteria and naturally occurring microorganisms. Positive results, in terms of color and odor, were also observed during the entire storage of steaks preserved with the extract.


Assuntos
Antibacterianos/farmacologia , Conservantes de Alimentos/farmacologia , Malpighiaceae/química , Carne/microbiologia , Extratos Vegetais/farmacologia , Animais , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Búfalos , Microbiologia de Alimentos , Conservação de Alimentos , Armazenamento de Alimentos , Carne/análise , Testes de Sensibilidade Microbiana
19.
Front Microbiol ; 7: 1998, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066336

RESUMO

An Universal Stress Protein (USP) expressed under acid stress condition by Listeria innocua ATCC 33090 was investigated. The USP was up-regulated not only in the stationary phase but also during the exponential growth phase. The three dimensional (3D) structure of USP was predicted using a combined proteomic and bioinformatics approach. Phylogenetic analysis showed that the USP from Listeria detected in our study was distant from the USPs of other bacteria (such as Pseudomonas spp., Escherichia coli, Salmonella spp.) and clustered in a separate and heterogeneous class including several USPs from Listeria spp. and Lactobacillus spp. An important information on the studied USP was obtained from the 3D-structure established through the homology modeling procedure. In detail, the Model_USP-691 suggested that the investigated USP had a homo-tetrameric quaternary structure. Each monomer presented an architecture analogous to the Rossmann-like α/ß-fold with five parallel ß-strands, and four α-helices. The analysis of monomer-monomer interfaces and quality of the structure alignments confirmed the model reliability. In fact, the structurally and sequentially conserved hydrophobic residues of the ß-strand 5 (in particular the residues V146 and V148) were involved in the inter-chains contact. Moreover, the highly conserved residues I139 and H141 in the region α4 were involved in the dimer association and functioned as hot spots into monomer-monomer interface assembly. The hypothetical assembly of dimers was also supported by the large interface area and by the negative value of solvation free energy gain upon interface interaction. Finally, the structurally conserved ATP-binding motif G-2X-G-9X-G(S/T-N) suggested for a putative role of ATP in stabilizing the tetrameric assembly of the USP. Therefore, the results obtained from a multiple approach, consisting in the application of kinetic, proteomic, phylogenetic and modeling analyses, suggest that Listeria USP could be considered a new type of ATP-binding USP involved in the response to acid stress condition during the exponential growth phase.

20.
World J Microbiol Biotechnol ; 30(8): 2299-305, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24817564

RESUMO

In this study, 23 samples of traditional wines produced in Southern Italy were subjected to microbiological analyses with the aim to identify and biotype the predominant species of lactic acid bacilli. For this purpose, a multiple approach, consisting in the application of both phenotypic (API 50CHL test) and biomolecular methods (polymerase chain reaction-denaturing gradient gel electrophoresis and 16S rRNA gene sequencing) was used. The results showed that Lactobacillus plantarum was the predominant species, whereas Lb. brevis was detected in lower amount. In detail, out of 80 isolates 58 were ascribable to Lb. plantarum and 22 to Lb. brevis. Randomly amplified polymorphic DNA-polymerase chain reaction was used to highlight intraspecific variability among Lb. plantarum strains. Interestingly, the cluster analysis evidenced a relationship between different biotypes of Lb. plantarum and their origin, in terms of wine variety. Data acquired in this work show the possibility to obtain several malolactic fermentation starter cultures, composed by different Lb. plantarum biotypes, for their proper use in winemaking processes which are distinctive for each wine.


Assuntos
Lactobacillus plantarum/classificação , Lactobacillus plantarum/isolamento & purificação , Vinho/microbiologia , Técnicas de Tipagem Bacteriana , DNA Bacteriano/análise , Fermentação , Itália , Levilactobacillus brevis/classificação , Levilactobacillus brevis/isolamento & purificação , Malatos/metabolismo , Filogenia , Técnica de Amplificação ao Acaso de DNA Polimórfico , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA