Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(42): 56947-56956, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39389788

RESUMO

Lithium metal batteries (LMBs) are considered one of the most promising next-generation rechargeable batteries due to their high specific capacity. However, severe dendrite growth and subsequent formation of dead lithium (Li) during the battery cycling process impede its practical application. Although extensive experimental studies have been conducted to investigate the cycling process, and several theoretical models were developed to simulate the Li dendrite growth, there are limited theoretical studies on the dead Li formation, as well as the entire cycling process. Herein, we developed a phase-field model to simulate both electroplating and stripping process in a bare Li anode and Li anode covered with a protective layer. A step function is introduced in the stripping model to capture the dynamics of dead Li. Our simulation clearly shows the growth of dendrites from a bare Li anode during charging. These dendrites detach from the bulk anode during discharging, forming dead Li. Dendrite growth becomes more severe in subsequent cycles due to enhanced surface roughness of the Li anode, resulting in an increasing amount of dead Li. In addition, it is revealed that dendrites with smaller base diameters detach faster at the base and produce more dead lithium. Meanwhile, the Li anode covered with a protective layer cycles smoothly without forming Li dendrite and dead Li. However, if the protective layer is fractured, Li metal preferentially grows into the crack due to enhanced Li-ion (Li+) flux and forms a dendrite structure after penetration through the protective layer, which accelerates the dead Li formation in the subsequent stripping process. Our work thus provides a fundamental understanding of the mechanism of dead Li formation during the charging/discharging process and sheds light on the importance of the protective layer in the prevention of dead Li in LMBs.

2.
Nat Nanotechnol ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39327514

RESUMO

Hierarchical assemblies of ferroelectric nanodomains, so-called super-domains, can exhibit exotic morphologies that lead to distinct behaviours. Controlling these super-domains reliably is critical for realizing states with desired functional properties. Here we reveal the super-switching mechanism by using a biased atomic force microscopy tip, that is, the switching of the in-plane super-domains, of a model ferroelectric Pb0.6Sr0.4TiO3. We demonstrate that the writing process is dominated by a super-domain nucleation and stabilization process. A complex scanning-probe trajectory enables on-demand formation of intricate centre-divergent, centre-convergent and flux-closure polar structures. Correlative piezoresponse force microscopy and optical spectroscopy confirm the topological nature and tunability of the emergent structures. The precise and versatile nanolithography in a ferroic material and the stability of the generated structures, also validated by phase-field modelling, suggests potential for reliable multi-state nanodevice architectures and, thereby, an alternative route for the creation of tunable topological structures for applications in neuromorphic circuits.

3.
Lancet Reg Health Southeast Asia ; 29: 100464, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39247446

RESUMO

Low-income and middle-income countries (LMICs) of southeast Asia are passing through a similar phase as India in their tryst with the development of novel drugs. They are beginning to break away from their dependency on the institutions of our developed world. Over the past few years, Tata Memorial Centre-India's premier cancer centre-has shown the tenacity to develop drugs within the national frontiers. By collaborating with the domestic pharmaceutical industries, it has been able to have a steady pipeline of drugs under development, with two of them receiving marketing authorization recently. Lately, Indonesia and Vietnam have also shown an inclination towards public-private partnerships for similar motives. However, due to prolonged innovative stagnation, the entire drug development machinery faces challenges stretching all the way from arranging funds to persuading regulatory bodies. In this Viewpoint, we have tried to address a few of those issues and their potential solutions, with the intention to share our own experience which might be useful to other LMICs in connecting some adamant dots.

4.
Nat Commun ; 15(1): 3085, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600128

RESUMO

Constructing an artificial solid electrolyte interphase (SEI) on lithium metal electrodes is a promising approach to address the rampant growth of dangerous lithium morphologies (dendritic and dead Li0) and low Coulombic efficiency that plague development of lithium metal batteries, but how Li+ transport behavior in the SEI is coupled with mechanical properties remains unknown. We demonstrate here a facile and scalable solution-processed approach to form a Li3N-rich SEI with a phase-pure crystalline structure that minimizes the diffusion energy barrier of Li+ across the SEI. Compared with a polycrystalline Li3N SEI obtained from conventional practice, the phase-pure/single crystalline Li3N-rich SEI constitutes an interphase of high mechanical strength and low Li+ diffusion barrier. We elucidate the correlation among Li+ transference number, diffusion behavior, concentration gradient, and the stability of the lithium metal electrode by integrating phase field simulations with experiments. We demonstrate improved reversibility and charge/discharge cycling behaviors for both symmetric cells and full lithium-metal batteries constructed with this Li3N-rich SEI. These studies may cast new insight into the design and engineering of an ideal artificial SEI for stable and high-performance lithium metal batteries.

5.
ACS Appl Mater Interfaces ; 16(10): 12353-12362, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38436097

RESUMO

Rechargeable garnet-based solid-state Li batteries hold immense promise as nonflammable, nontoxic, and high energy density energy storage systems, employing Li7La3Zr2O12 (LLZO) with a garnet-type structure as the solid-state electrolyte. Despite substantial progress in this field, the advancement and eventual commercialization of garnet-based solid-state Li batteries are impeded by void formation at the LLZO/Li interface at practical current densities and areal capacities beyond 1 mA cm-2 and 1 mAh cm-2, respectively, resulting in limited cycling stability and the emergence of Li dendrites. Additionally, developing a fabrication approach for thin LLZO electrolytes to achieve high energy density remains paramount. To address these critical challenges, herein, we present a facile methodology for fabricating self-standing, 50 µm thick, porous LLZO membranes with a small pore size of ca. 2.3 µm and an average porosity of 51%, resulting in a specific surface area of 1.3 µm-1, the highest reported to date. The use of such LLZO membranes significantly increases the Li/LLZO contact area, effectively mitigating void formation. This methodology combines two key elements: (i) the use of small pore formers of ca. 1.5 µm and (ii) the use of ultrafast sintering, which circumvents ceramics overdensification using rapid heating/cooling rates of ca. 50 °C per second. The fabricated porous LLZO membranes demonstrate exceptional cycling stability in a symmetrical Li/LLZO/Li cell configuration, exceeding 600 h of continuous operation at a current density of 0.1 mA cm-2.

6.
ACS Appl Mater Interfaces ; 15(51): 59329-59336, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38091363

RESUMO

Metallic zinc (Zn) has been considered one of the most promising anode materials for next-generation aqueous Zn batteries due to its low redox potential and high storage capacity. However, excessive dendrite formation in Zn metal, corrosion, the evolution of hydrogen gas during the cycling process, and the poor Zn-ion (Zn2+) transport from the electrolyte to the electrode limit its practical application. One of the most effective strategies to suppress Zn dendrite growth and promote Zn2+ transport is to introduce suitable protective layers between the Zn metal electrode and the electrolyte. Herein, we mathematically simulated the dynamic interactions between the Zn deposition on the anode and the resulting displacement of a protective layer that covers the anode, the latter of which can simultaneously inhibit Zn dendrite growth and enhance the Zn2+ transport through the interface between the Zn anode and the protective layer. Our simulation results indicate that a protective layer of high Zn2+ diffusivity not only improves the deposition rate of the Zn metal but also prevents dendrite growth by homogenizing the Zn2+ concentration at the anode surface. In addition, it is revealed that the anisotropic Zn2+ diffusivity in the protective layer influences the 2D diffusion of Zn2+. Higher Zn2+ diffusivity perpendicular to the Zn metal surface inhibits dendrite growth, while higher diffusivity parallel to the Zn metal surface promotes dendrite growth. Our work thus provides a fundamental understanding and a design principle for controlling anisotropic Zn2+ diffusion in the protective layer for better suppression of dendrite growth in Zn metal batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA