Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 43(1): 151, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38812026

RESUMO

BACKGROUND: SMYD3 has been found implicated in cancer progression. Its overexpression correlates with cancer growth and invasion, especially in gastrointestinal tumors. SMYD3 transactivates multiple oncogenic mechanisms, favoring cancer development. Moreover, it was recently shown that SMYD3 is required for DNA restoration by promoting homologous recombination (HR) repair. METHODS: In cellulo and in vivo models were employed to investigate the role of SMYD3 in cancer chemoresistance. Analyses of SMYD3-KO cells, drug-resistant cancer cell lines, patients' residual gastric or rectal tumors that were resected after neoadjuvant therapy and mice models were performed. In addition, the novel SMYD3 covalent inhibitor EM127 was used to evaluate the impact of manipulating SMYD3 activity on the sensitization of cancer cell lines, tumorspheres and cancer murine models to chemotherapeutics (CHTs). RESULTS: Here we report that SMYD3 mediates cancer cell sensitivity to CHTs. Indeed, cancer cells lacking SMYD3 functions showed increased responsiveness to CHTs, while restoring its expression promoted chemoresistance. Specifically, SMYD3 is essential for the repair of CHT-induced double-strand breaks as it methylates the upstream sensor ATM and allows HR cascade propagation through CHK2 and p53 phosphorylation, thereby promoting cancer cell survival. SMYD3 inhibition with the novel compound EM127 showed a synergistic effect with CHTs in colorectal, gastric, and breast cancer cells, tumorspheres, and preclinical colorectal cancer models. CONCLUSIONS: Overall, our results show that targeting SMYD3 may be an effective therapeutic strategy to overcome chemoresistance.


Assuntos
Dano ao DNA , Reparo do DNA , Resistencia a Medicamentos Antineoplásicos , Histona-Lisina N-Metiltransferase , Humanos , Animais , Camundongos , Reparo do DNA/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Feminino
2.
Cell Biosci ; 13(1): 223, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041178

RESUMO

BACKGROUND: Activation of the Wnt pathway has been linked to colorectal cancer (CRC). Previous reports suggest that Wnt3a can activate p38. Besides, p38α feeds into the canonical Wnt/ß-catenin pathway by inhibiting GSK3ß through phosphorylation. Recently, we identified p38α as a new druggable member of ß-catenin chromatin-associated kinase complexes in CRC. METHODS: The functional relationship between p38α and ß-catenin was characterized in CRC cells, patient-derived CRC stem cells, patient-derived tumor intestinal organoids, and in vivo models (C57BL/6-APCMin/+ mice). The role of p38α in ß-catenin transcriptional activity was assessed by pharmacological inhibition with ralimetinib. RESULTS: We used the GSK3ß inhibitor TWS-119, which promotes the activation of Wnt signaling, to uncouple p38α nuclear/cytoplasmatic functions in the Wnt pathway. Upon GSK3ß inhibition, nuclear p38α phosphorylates ß-catenin at residues S111 and T112, allowing its binding to promoter regions of Wnt target genes and the activation of a transcriptional program implicated in cancer progression. If p38α is pharmacologically inhibited in addition to GSK3ß, ß-catenin is prevented from promoting target gene transcription, which is expected to impair carcinogenesis. CONCLUSIONS: p38α seems to play a dual role as a member of the ß-catenin destruction complex and as a ß-catenin chromatin-associated kinase in CRC. This finding may help elucidate mechanisms contributing to human colon tumor pathogenesis and devise new strategies for personalized CRC treatment.

3.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139222

RESUMO

Classic galactosemia is an autosomal recessive inherited liver disorder of carbohydrate metabolism caused by deficient activity of galactose-1-phosphate uridylyltransferase (GALT). While a galactose-restricted diet is lifesaving, most patients still develop long-term complications. In this study, we report on a two-week-old female patient who is a compound heterozygote for a known pathogenic variant (p.K285N) and a novel missense variant (p.A303D) in the GALT gene. Segregation analysis showed that the patient inherited the p.K285N pathogenic variant from her father and the p.A303D variant from her mother. A bioinformatics analysis to predict the impact of the p.A303D missense variant on the structure and stability of the GALT protein revealed that it may be pathogenic. Based on this finding, we performed a literature review of all GALT missense variants identified in homozygous and compound heterozygous galactosemia patients carrying the p.K285N pathogenic variant to explore their molecular effects on the clinical phenotype of the disease. Our analysis revealed that these missense variants are responsible for a wide range of molecular defects. This study expands the clinical and mutational spectrum in classic galactosemia and reinforces the importance of understanding the molecular consequences of genetic variants to incorporate genetic analysis into clinical care.


Assuntos
Galactosemias , UTP-Hexose-1-Fosfato Uridililtransferase , Feminino , Humanos , Galactose , Galactosemias/genética , Mutação , Mutação de Sentido Incorreto , UTP-Hexose-1-Fosfato Uridililtransferase/genética , UTP-Hexose-1-Fosfato Uridililtransferase/metabolismo
4.
Cells ; 12(22)2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37998381

RESUMO

Cells respond to DNA damage by activating a complex array of signaling networks, which include the AMPK and mTOR pathways. After DNA double-strand breakage, ATM, a core component of the DNA repair system, activates the AMPK-TSC2 pathway, leading to the inhibition of the mTOR cascade. Recently, we showed that both AMPK and mTOR interact with SMYD3, a methyltransferase involved in DNA damage response. In this study, through extensive molecular characterization of gastrointestinal and breast cancer cells, we found that SMYD3 is part of a multiprotein complex that is involved in DNA damage response and also comprises AMPK and mTOR. In particular, upon exposure to the double-strand break-inducing agent neocarzinostatin, SMYD3 pharmacological inhibition suppressed AMPK cascade activation and thereby promoted the mTOR pathway, which reveals the central role played by SMYD3 in the modulation of AMPK-mTOR signaling balance during cancer cell response to DNA double-strand breaks. Moreover, we found that SMYD3 can methylate AMPK at the evolutionarily conserved residues Lys411 and Lys424. Overall, our data revealed that SMYD3 can act as a bridge between the AMPK and mTOR pathways upon neocarzinostatin-induced DNA damage in gastrointestinal and breast cancer cells.


Assuntos
Neoplasias da Mama , Zinostatina , Humanos , Feminino , Proteínas Quinases Ativadas por AMP/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Dano ao DNA , DNA , Histona-Lisina N-Metiltransferase/genética
5.
Comput Struct Biotechnol J ; 21: 5240-5248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954147

RESUMO

SMDY3 is a histone-lysine N-methyltransferase involved in several oncogenic processes and is believed to play a major role in various cancer hallmarks. Recently, we identified ATM, BRCA2, CHK2, MTOR, BLM, MET, AMPK, and p130 as direct SMYD3 interactors by taking advantage of a library of rare tripeptides, which we first tested for their in vitro binding affinity to SMYD3 and then used as in silico probes to systematically search the human proteome. Here, we used this innovative approach to identify further SMYD3-interacting proteins involved in crucial cancer pathways and found that the chromatin remodeling factors EP300 and TRRAP interact directly with SMYD3, thus linking SMYD3 to the emerging 'nonmutational epigenetic reprogramming' cancer hallmark. Of note, we validated these interactions in gastrointestinal cancer cell lines, including HCT-116 cells, which harbor a C-terminal truncating mutation in EP300, suggesting that EP300 binds to SMYD3 via its N-terminal region. While additional studies are required to ascertain the functional mechanisms underlying these interactions and their significance, the identification of two novel SMYD3 interactors involved in epigenetic cancer hallmark pathways adds important pieces to the puzzle of how SMYD3 exerts its oncogenic role.

6.
Cells ; 12(20)2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37887325

RESUMO

Gastric cancer (GC) is the third most deadly cancer worldwide. Considerable efforts have been made to find targetable drivers in order to improve patient outcomes. MET is one of the most important factors involved in GC initiation and progression as it plays a major role in GC invasiveness and is related to cancer stemness. Unfortunately, treatment strategies targeting MET are still limited, with a proportion of patients responding to therapy but later developing resistance. Here, we showed that MET is a molecular partner of the SMYD3 methyltransferase in GC cells. Moreover, we found that SMYD3 pharmacological inhibition affects the HGF/MET downstream signaling pathway. Extensive cellular analyses in GC models indicated that EM127, a novel active site-selective covalent SMYD3 inhibitor, can be used as part of a synergistic approach with MET inhibitors in order to enhance the targeting of the HGF/MET pathway. Importantly, our data were confirmed in a 3D GC cell culture system, which was used as a surrogate to evaluate stemness characteristics. Our findings identify SMYD3 as a promising therapeutic target to impair the HGF/MET pathway for the treatment of GC.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/metabolismo , Transdução de Sinais , Fator de Crescimento de Hepatócito , Histona-Lisina N-Metiltransferase/metabolismo
7.
Cancers (Basel) ; 15(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37894428

RESUMO

Lynch syndrome (LS) is an inherited cancer susceptibility syndrome caused by germline mutations in a DNA mismatch repair (MMR) gene or in the EPCAM gene. LS is associated with an increased lifetime risk of colorectal cancer (CRC) and other malignancies. The screening algorithm for LS patient selection is based on the identification of CRC specimens that have MMR loss/high microsatellite instability (MSI-H) and are wild-type for BRAFV600. Here, we sought to clinically and molecularly characterize patients with these features. From 2017 to 2023, 841 CRC patients were evaluated for MSI and BRAFV600E mutation status, 100 of which showed MSI-H. Of these, 70 were wild-type for BRAFV600. Among these 70 patients, 30 were genetically tested for germline variants in hereditary cancer predisposition syndrome genes. This analysis showed that 19 of these 30 patients (63.3%) harbored a germline pathogenic or likely pathogenic variant in MMR genes, 2 (6.7%) harbored a variant of unknown significance (VUS) in MMR genes, 3 (10%) harbored a VUS in other cancer-related genes, and 6 (20%) were negative to genetic testing. These findings highlight the importance of personalized medicine for tailored genetic counseling, management, and surveillance of families with LS and other hereditary cancer syndromes.

8.
Genes Chromosomes Cancer ; 62(12): 703-709, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37395289

RESUMO

Heterozygous germline or somatic variants in AKT3 gene can cause isolated malformations of cortical development (MCDs) such as focal cortical dysplasia, megalencephaly (MEG), Hemimegalencephaly (HME), dysplastic megalencephaly, and syndromic forms like megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome, and megalencephaly-capillary malformation syndrome. This report describes a new case of HME and capillary malformation caused by a somatic AKT3 variant that differs from the common p.E17K variant described in literature. The patient's skin biopsy from the angiomatous region revealed an heterozygous likely pathogenic variant AKT3:c.241_243dup, p.(T81dup) that may affect the binding domain and downstream pathways. Compared to previously reported cases with a common E17K mosaic variant, the phenotype is milder and patients showed segmental overgrowth, an uncommon characteristic in AKT3 variant cases. These findings suggest that the severity of the disease may be influenced not only by the level of mosaicism but also by the type of variant. This report expands the phenotypic spectrum associated with AKT3 variants and highlights the importance of genomic analysis in patients with capillary malformation and MCDs.


Assuntos
Megalencefalia , Malformações Vasculares , Humanos , Mutação , Megalencefalia/genética , Megalencefalia/patologia , Malformações Vasculares/genética , Fenótipo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
9.
Genes (Basel) ; 14(1)2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36672906

RESUMO

Pathogenic variants in genes are involved in histone acetylation and deacetylation resulting in congenital anomalies, with most patients displaying a neurodevelopmental disorder and dysmorphism. Arboleda-Tham syndrome caused by pathogenic variants in KAT6A (Lysine Acetyltransferase 6A; OMIM 601408) has been recently described as a new neurodevelopmental disorder. Herein, we describe a patient characterized by complex phenotype subsequently diagnosed using the clinical exome sequencing (CES) with Arboleda-Tham syndrome (ARTHS; OMIM 616268). The analysis revealed the presence of de novo pathogenic variant in KAT6A gene, a nucleotide c.3385C>T substitution that introduces a premature termination codon (p.Arg1129*). The need for straight multidisciplinary collaboration and accurate clinical description findings (bowel obstruction/megacolon/intestinal malrotation) was emphasized, together with the utility of CES in establishing an etiological basis in clinical and genetical heterogeneous conditions. Therefore, considering the phenotypic characteristics, the condition's rarity and the reviewed literature, we propose additional diagnostic criteria that could help in the development of future clinical diagnostic guidelines. This was possible thanks to objective examinations performed during the long follow-up period, which permitted scrupulous registration of phenotypic changes over time to further assess this rare disorder. Finally, given that different genetic syndromes are associated with distinct genomic DNA methylation patterns used for diagnostic testing and/or as biomarker of disease, a specific episignature for ARTHS has been identified.


Assuntos
Histona Acetiltransferases , Transtornos do Neurodesenvolvimento , Humanos , Códon sem Sentido , Testes Genéticos , Histona Acetiltransferases/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo
10.
J Med Genet ; 60(2): 163-173, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35256403

RESUMO

BACKGROUND: Postzygotic activating PIK3CA variants cause several phenotypes within the PIK3CA-related overgrowth spectrum (PROS). Variant strength, mosaicism level, specific tissue involvement and overlapping disorders are responsible for disease heterogeneity. We explored these factors in 150 novel patients and in an expanded cohort of 1007 PIK3CA-mutated patients, analysing our new data with previous literature to give a comprehensive picture. METHODS: We performed ultradeep targeted next-generation sequencing (NGS) on DNA from skin biopsy, buccal swab or blood using a panel including phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin pathway genes and GNAQ, GNA11, RASA1 and TEK. Additionally, 914 patients previously reported were systematically reviewed. RESULTS: 93 of our 150 patients had PIK3CA pathogenetic variants. The merged PROS cohort showed that PIK3CA variants span thorough all gene domains, some were exclusively associated with specific PROS phenotypes: weakly activating variants were associated with central nervous system (CNS) involvement, and strongly activating variants with extra-CNS phenotypes. Among the 57 with a wild-type PIK3CA allele, 11 patients with overgrowth and vascular malformations overlapping PROS had variants in GNAQ, GNA11, RASA1 or TEK. CONCLUSION: We confirm that (1) molecular diagnostic yield increases when multiple tissues are tested and by enriching NGS panels with genes of overlapping 'vascular' phenotypes; (2) strongly activating PIK3CA variants are found in affected tissue, rarely in blood: conversely, weakly activating mutations more common in blood; (3) weakly activating variants correlate with CNS involvement, strong variants are more common in cases without; (4) patients with vascular malformations overlapping those of PROS can harbour variants in genes other than PIK3CA.


Assuntos
Malformações Vasculares , Humanos , Mutação/genética , Fenótipo , Genótipo , Classe I de Fosfatidilinositol 3-Quinases/genética , Malformações Vasculares/diagnóstico , Malformações Vasculares/genética , Proteína p120 Ativadora de GTPase/genética
11.
Cancers (Basel) ; 16(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38201484

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal malignancies worldwide. While population-wide screening recommendations for PDAC in asymptomatic individuals are not achievable due to its relatively low incidence, pancreatic cancer surveillance programs are recommended for patients with germline causative variants in PDAC susceptibility genes or a strong family history. In this study, we sought to determine the prevalence and significance of germline alterations in major genes (ATM, BRCA1, BRCA2, CDKN2A, EPCAM, MLH1, MSH2, MSH6, PALB2, PMS2, STK11, TP53) involved in PDAC susceptibility. We performed a systematic review of PubMed publications reporting germline variants identified in these genes in PDAC patients. Overall, the retrieved articles included 1493 PDAC patients. A high proportion of these patients (n = 1225/1493, 82%) were found to harbor alterations in genes (ATM, BRCA1, BRCA2, PALB2) involved in the homologous recombination repair (HRR) pathway. Specifically, the remaining PDAC patients were reported to carry alterations in genes playing a role in other cancer pathways (CDKN2A, STK11, TP53; n = 181/1493, 12.1%) or in the mismatch repair (MMR) pathway (MLH1, MSH2, MSH6, PMS2; n = 87/1493, 5.8%). Our findings highlight the importance of germline genetic characterization in PDAC patients for better personalized targeted therapies, clinical management, and surveillance.

12.
Genes Chromosomes Cancer ; 61(11): 689-695, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35778969

RESUMO

Lateralized/segmental overgrowth disorders (LOs) encompass a heterogeneous group of congenital conditions with excessive body tissue growth. Documented molecular alterations in LOs mostly consist of somatic variants in genes of the PI3KCA/AKT/mTOR pathway or of chromosome band 11p15.5 imprinted region anomalies. In some cases, somatic pathogenic variants in genes of the RAS/MAPK pathway have been reported. We present the first case of a somatic pathogenic variant (T507K) in PTPN11 causing a LO phenotype characterized by severe lateralized overgrowth, vascular proliferation, and cerebral astrocytoma. The T507K variant was detected in DNA from overgrown tissue in a leg with capillary malformation. The astrocytoma tissue showed a higher PTPN11 variant allele frequency. A pathogenic variant in FGFR1 was also found in tumor tissue, representing a second hit on the RAS/MAPK pathway. These findings indicate that RAS/MAPK cascade overactivation can cause mosaic overgrowth phenotypes resembling PIK3CA-related overgrowth disorders (PROS) with cancer predisposition and are consistent with the hypothesis that RAS/MAPK hyperactivation can be involved in the pathogenesis of astrocytoma. This observation raises the issue of cancer predisposition in patients with RAS/MAPK pathway gene variants and expands genotype spectrum of LOs and the treatment options for similar cases through inhibition of the RAS/MAPK oversignaling.


Assuntos
Astrocitoma , Malformações Vasculares , Classe I de Fosfatidilinositol 3-Quinases/genética , Genótipo , Humanos , Mutação , Fenótipo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Malformações Vasculares/genética
13.
Cancers (Basel) ; 14(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35053526

RESUMO

BACKGROUND: Pathogenic variants in homologous recombination repair (HRR) genes other than BRCA1/2 have been associated with a high risk of ovarian cancer (OC). In current clinical practice, genetic testing is generally limited to BRCA1/2. Herein, we investigated the mutational status of both BRCA1/2 and 5 HRR genes in 69 unselected OC, evaluating the advantage of multigene panel testing in everyday clinical practice. METHODS: We analyzed 69 epithelial OC samples using an NGS custom multigene panel of the 5 HRR pathways genes, beyond the genetic screening routine of BRCA1/2 testing. RESULTS: Overall, 19 pathogenic variants (27.5%) were detected. The majority (21.7%) of patients displayed a deleterious mutation in BRCA1/2, whereas 5.8% harbored a pathogenic variant in one of the HRR genes. Additionally, there were 14 (20.3%) uncertain significant variants (VUS). The assessment of germline mutational status showed that a small number of variants (five) were not detected in the corresponding blood sample. Notably, we detected one BRIP1 and four BRCA1/2 deleterious variants in the low-grade serous and endometrioid histology OC, respectively. CONCLUSION: We demonstrate that using a multigene panel beyond BRCA1/2 improves the diagnostic yield in OC testing, and it could produce clinically relevant results.

14.
Cancers (Basel) ; 13(18)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34572941

RESUMO

BRCA1/2-associated hereditary breast and ovarian cancer is the most common form of hereditary breast and ovarian cancer and occurs in all ethnicities and racial populations. Different BRCA1/BRCA2 pathogenic variants (PVs) have been reported with a wide variety among populations. In this study, we retrospectively analyzed prevalence and geographic distribution of pathogenic germline BRCA1/2 variants in families from Apulia in southern Italy and evaluated the genotype-phenotype correlations. Data were collected from Oncogenetic Services present in Apulian hospitals and a shared database was built containing Apulian native probands (n = 2026) that had undergone genetic testing from 2004 to 2019. PVs were detected in 499 of 2026 (24.6%) probands and 68.5% of them (342 of 499) were in the BRCA1 gene. We found 65 different PVs in BRCA1 and 46 in BRCA2. There were 10 most recurrent PVs and their geographical distribution appears to be significantly specific for each province. We have assumed that these PVs are related to the historical and geopolitical changes that occurred in Apulia over time and/or to a "founder effect". Broader knowledge of BRCA1/2 prevalence and recurring PVs in specific geographic areas could help establish more flexible genetic testing strategies that may enhance our ability to detect high-risk subjects.

15.
Artigo em Inglês | MEDLINE | ID: mdl-33946243

RESUMO

Wolfram syndrome is a rare neurodegenerative disorder that is typically characterized by diabetes mellitus and optic atrophy. Other common features are diabetes insipidus and hearing loss, but additional less-frequent findings may also be present. The phenotype spectrum is quite wide, and penetrance may be incomplete. The syndrome is progressive, and thus, the clinical picture may change during follow-up. Currently, two different subtypes of this syndrome have been described, and they are associated with two different disease-genes, wolframin (WFS1) and CISD2. These genes encode a transmembrane protein and an endoplasmic reticulum intermembrane protein, respectively. These genes are detected in different organs and account for the pleiotropic features of this syndrome. In this review, we describe the phenotypes of both syndromes and discuss the most pertinent literature about the genotype-phenotype correlation. The clinical presentation of Wolfram syndrome type 1 suggests that the pathogenic variant does not predict the phenotype. There are few papers on Wolfram syndrome type 2 and, thus, predicting the phenotype on the basis of genotype is not yet supported. We also discuss the most pertinent approach to gene analysis.


Assuntos
Atrofia Óptica , Síndrome de Wolfram , Estudos de Associação Genética , Genótipo , Humanos , Mutação , Fenótipo , Síndrome de Wolfram/genética
16.
Genes (Basel) ; 11(12)2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353066

RESUMO

Congenital myasthenic syndromes (CMSs) are caused by mutations in genes that encode proteins involved in the organization, maintenance, function, or modification of the neuromuscular junction. Among these, the collagenic tail of endplate acetylcholinesterase protein (COLQ; MIM 603033) has a crucial role in anchoring the enzyme into the synaptic basal lamina. Here, we report on the first case of a patient with a homozygous deletion affecting the last exons of the COLQ gene in a CMS patient born to consanguineous parents of Pakistani origin. Electromyography (EMG), electroencephalography (EEG), clinical exome sequencing (CES), and single nucleotide polymorphism (SNP) array analyses were performed. The subject was born at term after an uneventful pregnancy and developed significant hypotonia and dystonia, clinical pseudoseizures, and recurring respiratory insufficiency with a need for mechanical ventilation. CES analysis of the patient revealed a homozygous deletion of the COLQ gene located on the 3p25.1 chromosome region. The SNP-array confirmed the presence of deletion that extended from exon 11 to the last exon 17 with a size of 19.5 Kb. Our results add new insights about the underlying pathogenetic mechanisms expanding the spectrum of causative COLQ mutations. It is relevant, considering the therapeutic implications, to apply suitable molecular approaches so that no type of mutation is missed: "each lost mutation means a baby treated improperly".


Assuntos
Acetilcolinesterase/genética , Colágeno/genética , Proteínas Musculares/genética , Síndromes Miastênicas Congênitas/genética , Consanguinidade , Variações do Número de Cópias de DNA , Eletroencefalografia , Eletromiografia , Éxons/genética , Feminino , Estudos de Associação Genética , Homozigoto , Humanos , Lactente , Masculino , Hipotonia Muscular/genética , Síndromes Miastênicas Congênitas/diagnóstico , Linhagem , Polimorfismo de Nucleotídeo Único , Deleção de Sequência , Espasmos Infantis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA