Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 120(3): 039602, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29400530
2.
Phys Rev Lett ; 119(19): 197204, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29219521

RESUMO

Modulation and δ-doping strategies, in which atomically thin layers of charged dopants are precisely deposited within a heterostructure, have played enabling roles in the discovery of new physical behavior in electronic materials. Here, we demonstrate a purely structural "δ-doping" strategy in complex oxide heterostructures, in which atomically thin manganite layers are inserted into an isovalent manganite host, thereby modifying the local rotations of corner-connected MnO_{6} octahedra. Combining scanning transmission electron microscopy, polarized neutron reflectometry, and density functional theory, we reveal how local magnetic exchange interactions are enhanced within the spatially confined regions of suppressed octahedral rotations. The combined experimental and theoretical results illustrate the potential to utilize noncharge-based approaches to "doping" in order to enhance or suppress functional properties within spatially confined regions of oxide heterostructures.

3.
Nat Mater ; 16(7): 717-721, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28604716

RESUMO

Two-dimensional (2D) materials have been studied extensively as monolayers, vertical or lateral heterostructures. To achieve functionalization, monolayers are often patterned using soft lithography and selectively decorated with molecules. Here we demonstrate the growth of a family of 2D materials that are intrinsically patterned. We demonstrate that a monolayer of PtSe2 can be grown on a Pt substrate in the form of a triangular pattern of alternating 1T and 1H phases. Moreover, we show that, in a monolayer of CuSe grown on a Cu substrate, strain relaxation leads to periodic patterns of triangular nanopores with uniform size. Adsorption of different species at preferred pattern sites is also achieved, demonstrating that these materials can serve as templates for selective self-assembly of molecules or nanoclusters, as well as for the functionalization of the same substrate with two different species.

4.
Faraday Discuss ; 191: 215-227, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27419918

RESUMO

The combination of iron oxide and gold in a single nanoparticle results in both magnetic and plasmonic properties that can stimulate novel applications in bio-sensing, medical imaging, or therapeutics. Microwave assisted heating allows the fabrication of multi-component, multi-functional nanostructures by promoting selective heating at desired sites. Recently, we reported a microwave-assisted polyol route yielding gold nanotriangles decorated with iron oxide nanoparticles. Here, we present an in-depth microstructural and compositional characterization of the system using scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS). A method to remove the iron oxide nanoparticles from the gold nanocrystals and some insights on crystal nucleation and growth mechanisms are also provided.

5.
Nanotechnology ; 27(15): 155202, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26934391

RESUMO

The nanoscale optical response of surface plasmons in three-dimensional metallic nanostructures plays an important role in many nanotechnology applications, where precise spatial and spectral characteristics of plasmonic elements control device performance. Electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) within a scanning transmission electron microscope have proven to be valuable tools for studying plasmonics at the nanoscale. Each technique has been used separately, producing three-dimensional reconstructions through tomography, often aided by simulations for complete characterization. Here we demonstrate that the complementary nature of the two techniques, namely that EELS probes beam-induced electronic excitations while CL probes radiative decay, allows us to directly obtain a spatially- and spectrally-resolved picture of the plasmonic characteristics of nanostructures in three dimensions. The approach enables nanoparticle-by-nanoparticle plasmonic analysis in three dimensions to aid in the design of diverse nanoplasmonic applications.

6.
Nano Lett ; 16(1): 121-5, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26691292

RESUMO

We present a theoretical study of the thermoelectric efficiency of "interlaced crystals", recently discovered in hexagonal-CuInS2 nanoparticles. Interlaced crystals are I-III-VI2 or II-IV-V2 tetrahedrally bonded compounds. They have a perfect Bravais lattice in which the two cations have an infinite set of possible ordering patterns within the cation sublattice. The material comprises nanoscale interlaced domains and phases with corresponding boundaries. Here we employ density functional theory and large-scale molecular dynamics calculations based on model classical potentials to demonstrate that the phase and domain boundaries are effective phonon scatterers and greatly suppress thermal conductivity. However, the absence of both structural defects and strain in the interlaced material results in a minimal effect on electronic properties. We predict an increase of thermal resistivity of up to 2 orders of magnitude, which makes interlaced crystals an exceptional candidate for thermoelectric applications.

7.
Sci Rep ; 5: 17229, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26673351

RESUMO

The blocking of ion transport at interfaces strongly limits the performance of electrochemical nanodevices for energy applications. The barrier is believed to arise from space-charge regions generated by mobile ions by analogy to semiconductor junctions. Here we show that something different is at play by studying ion transport in a bicrystal of yttria (9% mol) stabilized zirconia (YSZ), an emblematic oxide ion conductor. Aberration-corrected scanning transmission electron microscopy (STEM) provides structure and composition at atomic resolution, with the sensitivity to directly reveal the oxygen ion profile. We find that Y segregates to the grain boundary at Zr sites, together with a depletion of oxygen that is confined to a small length scale of around 0.5 nm. Contrary to the main thesis of the space-charge model, there exists no evidence of a long-range O vacancy depletion layer. Combining ion transport measurements across a single grain boundary by nanoscale electrochemical strain microscopy (ESM), broadband dielectric spectroscopy measurements, and density functional calculations, we show that grain-boundary-induced electronic states act as acceptors, resulting in a negatively charged core. Besides the possible effect of the modified chemical bonding, this negative charge gives rise to an additional barrier for ion transport at the grain boundary.

8.
Sci Rep ; 4: 6608, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25318849

RESUMO

The optical response of semiconducting monolayer transition-metal dichalcogenides (TMDCs) is dominated by strongly bound excitons that are stable even at room temperature. However, substrate-related effects such as screening and disorder in currently available specimens mask many anticipated physical phenomena and limit device applications of TMDCs. Here, we demonstrate that that these undesirable effects are strongly suppressed in suspended devices. Extremely robust (photogain > 1,000) and fast (response time < 1 ms) photoresponse allow us to study, for the first time, the formation, binding energies, and dissociation mechanisms of excitons in TMDCs through photocurrent spectroscopy. By analyzing the spectral positions of peaks in the photocurrent and by comparing them with first-principles calculations, we obtain binding energies, band gaps and spin-orbit splitting in monolayer TMDCs. For monolayer MoS2, in particular, we obtain an extremely large binding energy for band-edge excitons, E bind ≥ 570 meV. Along with band-edge excitons, we observe excitons associated with a van Hove singularity of rather unique nature. The analysis of the source-drain voltage dependence of photocurrent spectra reveals exciton dissociation and photoconversion mechanisms in TMDCs.

9.
Nat Mater ; 13(11): 1019-25, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25129618

RESUMO

The development of interface-based magnetoelectric devices necessitates an understanding of polarization-mediated electronic phenomena and atomistic polarization screening mechanisms. In this work, the LSMO/BFO interface is studied on a single unit-cell level through a combination of direct order parameter mapping by scanning transmission electron microscopy and electron energy-loss spectroscopy. We demonstrate an unexpected ~5% lattice expansion for regions with negative polarization charge, with a concurrent anomalous decrease of the Mn valence and change in oxygen K-edge intensity. We interpret this behaviour as direct evidence for screening by oxygen vacancies. The vacancies are predominantly accumulated at the second atomic layer of BFO, reflecting the difference of ionic conductivity between the components. This vacancy exclusion from the interface leads to the formation of a tail-to-tail domain wall. At the same time, purely electronic screening is realized for positive polarization charge, with insignificant changes in lattice and electronic properties. These results underline the non-trivial role of electrochemical phenomena in determining the functional properties of oxide interfaces. Furthermore, these behaviours suggest that vacancy dynamics and exclusion play major roles in determining interface functionality in oxide multilayers, providing clear implications for novel functionalities in potential electronic devices.

10.
Phys Rev Lett ; 108(19): 196601, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-23003068

RESUMO

Ca3Co4O9 has a unique structure that leads to exceptionally high thermoelectric transport. Here we report the achievement of a 27% increase in the room-temperature in-plane Seebeck coefficient of Ca3Co4O9 thin films. We combine aberration-corrected Z-contrast imaging, atomic-column resolved electron energy-loss spectroscopy, and density-functional calculations to show that the increase is caused by stacking faults with Co4+-ions in a higher spin state compared to that of bulk Ca3Co4O9. The higher Seebeck coefficient makes the Ca3Co4O9 system suitable for many high temperature waste-heat-recovery applications.

11.
Proc Natl Acad Sci U S A ; 109(25): 9710-5, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22647612

RESUMO

The control of material interfaces at the atomic level has led to novel interfacial properties and functionalities. In particular, the study of polar discontinuities at interfaces between complex oxides lies at the frontier of modern condensed matter research. Here we employ a combination of experimental measurements and theoretical calculations to demonstrate the control of a bulk property, namely ferroelectric polarization, of a heteroepitaxial bilayer by precise atomic-scale interface engineering. More specifically, the control is achieved by exploiting the interfacial valence mismatch to influence the electrostatic potential step across the interface, which manifests itself as the biased-voltage in ferroelectric hysteresis loops and determines the ferroelectric state. A broad study of diverse systems comprising different ferroelectrics and conducting perovskite underlayers extends the generality of this phenomenon.

12.
Nat Commun ; 3: 799, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22531184

RESUMO

Electrochromes are materials that have the ability to reversibly change from one colour state to another with the application of an electric field. Electrochromic colouration efficiency is typically large in organic materials that are not very stable chemically. Here we show that inorganic Bi(0.9)Ca(0.1)FeO(3-0.05) thin films exhibit a prominent electrochromic effect arising from an intrinsic mechanism due to the melting of oxygen-vacancy ordering and the associated redistribution of carriers. We use a combination of optical characterization techniques in conjunction with high-resolution transmission electron microscopy and first-principles theory. The absorption change and colouration efficiency at the band edge (blue-cyan region) are 4.8×10(6) m(-1) and 190 cm(2) C(-1), respectively, which are the highest reported values for inorganic electrochromes, even exceeding values of some organic materials.

13.
Phys Rev Lett ; 108(4): 047601, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22400888

RESUMO

We determine the atomic structure of the pseudotetragonal T phase and the pseudorhombohedral R phase in highly strained multiferroic BiFeO(3) thin films by using a combination of atomic-resolution scanning transmission electron microscopy and electron energy-loss spectroscopy. The coordination of the Fe atoms and their displacement relative to the O and Bi positions are assessed by direct imaging. These observations allow us to interpret the electronic structure data derived from electron energy-loss spectroscopy and provide evidence for the giant spontaneous polarization in strained BiFeO(3) thin films.

14.
Phys Rev Lett ; 109(24): 246101, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23368348

RESUMO

Aberration-corrected scanning transmission electron microscopy yields probe-position-dependent energy-loss near-edge structure (ELNES) measurements, potentially providing spatial mapping of the underlying electronic states. ELNES calculations, however, typically describe excitations by a plane wave traveling in vacuum, neglecting the interaction of the electron probe with the local electronic environment as it propagates through the specimen. Here, we report a methodology that combines a full electronic-structure calculation with propagation of a focused beam in a thin film. The results demonstrate that only a detailed calculation using this approach can provide quantitative agreement with observed variations in probe-position-dependent ELNES.

16.
Nano Lett ; 10(4): 1184-8, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20178372

RESUMO

The development of methods for controlling the motion and arrangement of molecules adsorbed on a metal surface would provide a powerful tool for the design of molecular electronic devices. Recently, metal phthalocyanines (MPc) have been extensively considered for use in such devices. Here we show that applied electric fields can be used to turn off the diffusivity of iron phthalocyanine (FePc) on Au(111) at fixed temperature, demonstrating a practical and direct method for controlling and potentially patterning FePc layers. Using scanning tunneling microscopy, we show that the diffusivity of FePc on Au(111) is a strong function of temperature and that applied electric fields can be used to retard or enhance molecular diffusion at fixed temperature. Using spin-dependent density-functional calculations, we then explore the origin of this effect, showing that applied fields modify both the molecule-surface binding energies and the molecular diffusion barriers through an interaction with the dipolar Fe-Au adsorption bond. On the basis of these results FePc on Au(111) is a promising candidate system for the development of adaptive molecular device structures.

17.
Phys Rev Lett ; 103(9): 097202, 2009 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-19792823

RESUMO

A nanoscale phase is known to coincide with colossal magnetoresistance (CMR) in manganites, but its volume fraction is believed to be too small to affect CMR. Here we provide scanning-electron-nanodiffraction images of nanoclusters as they form and evolve with temperature in La(1-x)Ca(x)MnO(3), x = 0.45. They are not doping inhomogeneities, and their structure is that of the bulk compound at x = 0.60, which at low temperatures is insulating. Their volume fraction peaks at the CMR critical temperature and is estimated to be 22% at finite magnetic fields. In view of the known dependence of the nanoscale phase on magnetic fields, such a volume fraction can make a significant contribution to the CMR peak.

18.
Nano Lett ; 9(12): 4306-10, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19845331

RESUMO

The explanations of several nanoscale phenomena such as the field enhancement factor in field emission, the large decay length of the adhesion force between a metallic tip and a surface, and the contact resistance in a nanowire break junction have been elusive. Here we develop an analytical theory of Thomas-Fermi screening in nanoscale structures. We demonstrate that nanoscale dimensions give rise to an effective screening length that depends on the geometry and physical boundary conditions. The above phenomena are shown to be manifestations of the effective screening length.


Assuntos
Modelos Químicos , Nanotecnologia/métodos , Nanotubos/química , Nanotubos/ultraestrutura , Adesividade , Simulação por Computador , Impedância Elétrica , Substâncias Macromoleculares/química , Conformação Molecular , Estresse Mecânico , Propriedades de Superfície , Resistência à Tração
19.
Philos Trans A Math Phys Eng Sci ; 367(1903): 3709-33, 2009 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-19687062

RESUMO

The new possibilities of aberration-corrected scanning transmission electron microscopy (STEM) extend far beyond the factor of 2 or more in lateral resolution that was the original motivation. The smaller probe also gives enhanced single atom sensitivity, both for imaging and for spectroscopy, enabling light elements to be detected in a Z-contrast image and giving much improved phase contrast imaging using the bright field detector with pixel-by-pixel correlation with the Z-contrast image. Furthermore, the increased probe-forming aperture brings significant depth sensitivity and the possibility of optical sectioning to extract information in three dimensions. This paper reviews these recent advances with reference to several applications of relevance to energy, the origin of the low-temperature catalytic activity of nanophase Au, the nucleation and growth of semiconducting nanowires, and the origin of the eight orders of magnitude increased ionic conductivity in oxide superlattices. Possible future directions of aberration-corrected STEM for solving energy problems are outlined.

20.
Nano Lett ; 9(11): 3683-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19317409

RESUMO

We investigate the feasibility of using CdTe nanotetrapods as circuit elements using models and simulation at multiple scales. Technology computer-aided design tools are used to simulate the electrical behavior for both metal-semiconductor field-effect transistors and junction field-effect transistors. Our results show that by varying the doping concentrations and material composition, CdTe nanotetrapods have the potential to be useful circuit elements. Monte Carlo simulations provide insight into how control over interparticle and particle-substrate interactions can lead to the directed assembly of ordered arrays of electrically gated nanotetrapods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA