RESUMO
Ambroxol (ABX) is a mucolytic agent used for the treatment of respiratory diseases. Bioactivity has been demonstrated as an enhancement effect on lysosomal acid ß-glucosidase (ß-Glu) activity in Gaucher disease (GD). The positive effects observed have been attributed to a mechanism of action similar to pharmacological chaperones (PCs), but an exact mechanistic description is still pending. The current study uses cell culture and in vitro assays to study the effects of ABX on ß-Glu activity, processing, and stability upon ligand binding. Structural analogues bromohexine, 4-hydroxybromohexine, and norbromohexine were screened for chaperone efficacy, and in silico docking was performed. The sugar mimetic isofagomine (IFG) strongly inhibits ß-Glu, while ABX exerts its inhibitory effect in the micromolar range. In GD patient fibroblasts, IFG and ABX increase mutant ß-Glu activity to identical levels. However, the characteristics of the banding patterns of Endoglycosidase-H (Endo-H)-digested enzyme and a substantially lower half-life of ABX-treated ß-Glu suggest different intracellular processing. In line with this observation, IFG efficiently stabilizes recombinant ß-Glu against thermal denaturation in vitro, whereas ABX exerts no significant effect. Additional ß-Glu enzyme activity testing using Bromohexine (BHX) and two related structures unexpectedly revealed that ABX alone can refunctionalize ß-Glu in cellula. Taken together, our data indicate that ABX has little in vitro ability to act as PC, so the mode of action requires further clarification.
Assuntos
Ambroxol , Doença de Gaucher , Ambroxol/farmacologia , Ambroxol/uso terapêutico , Doença de Gaucher/tratamento farmacológico , Glucosilceramidase/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , beta-Glucosidase/químicaRESUMO
Niemann-Pick type C1 (NP-C1) is a fatal, progressive neurodegenerative disease caused by mutations in the NPC1 gene. Mutations of NPC1 can result in a misfolded protein that is subsequently marked for proteasomal degradation. Such loss-of-function mutations lead to cholesterol accumulation in late endosomes and lysosomes. Pharmacological chaperones (PCs) are described to protect misfolded proteins from proteasomal degradation and are being discussed as a treatment strategy for NP-C1. Here, we used a combinatorial approach of high-throughput in silico screening of FDA-approved drugs and in vitro biochemical assays to identify potential PCs. The effects of the hit compounds identified by molecular docking were compared in vitro with 25-hydroxycholesterol (25-HC), which is known to act as a PC for NP-C1. We analyzed cholesterol accumulation, NPC1 protein content, and lysosomal localization in patient-specific fibroblasts, as well as in neural differentiated and hepatocyte-like cells derived from patient-specific induced pluripotent stem cells (iPSCs). One compound, namely abiraterone acetate, showed comparable results to 25-HC and restored NPC1 protein level, corrected the intracellular localization of NPC1, and consequently decreased cholesterol accumulation in NPC1-mutated fibroblasts and iPSC-derived neural differentiated and hepatocyte-like cells. The discovered PC altered not only the pathophysiological phenotype of cells carrying the I1061T mutation- known to be responsive to treatment with PCs-but an effect was also observed in cells carrying other NPC1 missense mutations. Therefore, we hypothesize that the PCs studied here may serve as an effective treatment strategy for a large group of NP-C1 patients.
Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Doença de Niemann-Pick Tipo C , Colesterol/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Simulação de Acoplamento Molecular , Doenças Neurodegenerativas/metabolismo , Proteína C1 de Niemann-Pick/genética , Proteína C1 de Niemann-Pick/metabolismo , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/metabolismoRESUMO
Mucopolysaccharidosis Type II (MPS II) is an X-linked recessive genetic disorder that primarily affects male patients. With an incidence of 1 in 100,000 male live births, the disease is one of the orphan diseases. MPS II symptoms are caused by mutations in the lysosomal iduronate-2-sulfatase (IDS) gene. The mutations cause a loss of enzymatic performance and result in the accumulation of glycosaminoglycans (GAGs), heparan sulfate and dermatan sulfate, which are no longer degradable. This inadvertent accumulation causes damage in multiple organs and leads either to a severe neurological course or to an attenuated course of the disease, although the exact relationship between mutation, extent of GAG accumulation and disease progression is not yet fully understood. This review is intended to present current diagnostic procedures and therapeutic interventions. In times when the genetic profile of patients plays an increasingly important role in the assessment of therapeutic success and future drug design, we chose to further elucidate the impact of genetic diversity within the IDS gene on disease phenotype and potential implications in current diagnosis, prognosis and therapy. We report recent advances in the structural biological elucidation of I2S enzyme that that promises to improve our future understanding of the molecular damage of the hundreds of IDS gene variants and will aid damage prediction of novel mutations in the future.
Assuntos
Glicoproteínas/metabolismo , Mucopolissacaridose II/genética , Animais , Glicoproteínas/química , Glicoproteínas/genética , Humanos , Mucopolissacaridose II/tratamento farmacológico , Mucopolissacaridose II/metabolismo , Mutação , FenótipoRESUMO
Macroautophagy/autophagy plays an important role in cellular copper clearance. The means by which the copper metabolism and autophagy pathways interact mechanistically is vastly unexplored. Dysfunctional ATP7B, a copper-transporting ATPase, is involved in the development of monogenic Wilson disease, a disorder characterized by disturbed copper transport. Using in silico prediction, we found that ATP7B contains a number of potential binding sites for LC3, a central protein in the autophagy pathway, the so-called LC3 interaction regions (LIRs). The conserved LIR3, located at the C-terminal end of ATP7B, was found to directly interact with LC3B in vitro. Replacing the two conserved hydrophobic residues W1452 and L1455 of LIR3 significantly reduced interaction. Furthermore, autophagy was induced in normal human hepatocellular carcinoma cells (HepG2) leading to enhanced colocalization of ATP7B and LC3B on the autophagosome membranes. By contrast, HepG2 cells deficient of ATP7B (HepG2 ATP7B-/-) showed autophagy deficiency at elevated copper condition. This phenotype was complemented by heterologous ATP7B expression. These findings suggest a cooperative role of ATP7B and LC3B in autophagy-mediated copper clearance.
Assuntos
ATPases Transportadoras de Cobre/metabolismo , Cobre/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Sequência de Aminoácidos , Transporte Biológico/efeitos dos fármacos , Cobre/farmacologia , ATPases Transportadoras de Cobre/química , Células Hep G2 , Humanos , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacosRESUMO
Autophagosome formation is a fundamental process in macroautophagy/autophagy, a conserved self-eating mechanism in all eukaryotes, which requires the conjugating ATG (autophagy related) protein complex, ATG12-ATG5-ATG16L1 and lipidated MAP1LC3/LC3 (microtubule associated protein 1 light chain 3). How the ATG12-ATG5-ATG16L1 complex is recruited to membranes is not fully understood. Here, we demonstrated that RAB33B plays a key role in recruiting the ATG16L1 complex to phagophores during starvation-induced autophagy. Crystal structures of RAB33B bound to the coiled-coil domain (CCD) of ATG16L1 revealed the recognition mechanism between RAB33B and ATG16L1. ATG16L1 is a novel RAB-binding protein (RBP) that can induce RAB proteins to adopt active conformation without nucleotide exchange. RAB33B and ATG16L1 mutually determined the localization of each other on phagophores. RAB33B-ATG16L1 interaction was required for LC3 lipidation and autophagosome formation. Upon starvation, a fraction of RAB33B translocated from the Golgi to phagophores and recruited the ATG16L1 complex. In this work, we reported a new mechanism for the recruitment of the ATG12-ATG5-ATG16L1 complex to phagophores by RAB33B, which is required for autophagosome formation.Abbreviations: ATG: autophagy-related; Cα: alpha carbon; CCD: coiled-coil domain; CLEM: correlative light and electron microscopy; DTE: dithioerythritol; EBSS: Earle's balanced salt solution; EDTA: ethylenediaminetetraacetic acid; EGFP: enhanced green fluorescent protein; FBS: fetal bovine serum; FLIM: fluorescence lifetime imaging microscopy; FRET: Förster resonance energy transfer; GDP: guanosine diphosphate; GOLGA2/GM130: golgin A2; GppNHp: guanosine 5'-[ß,γ-imido]triphosphate; GST: glutathione S-transferase; GTP: guanosine triphosphate; GTPγS: guanosine 5'-O-[gamma-thio]triphosphate; HA (tag): hemagglutinin (tag); HEK: human embryonic kidney; HeLa: Henrietta Lacks; HEPES: (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid); IgG: immunoglobulin G; Kd: dissociation constant; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MCF7: Michigan cancer foundation-7; MEF: mouse embryonic fibroblast; MEM: minimum essential medium Eagle; MST: microscale thermophoresis; NEAA: non-essential amino acids; PBS: phosphate-buffered saline; PE: phosphatidylethanolamine; PtdIns3P: phosphatidylinositol-3-phosphate; RAB: RAS-associated binding; RB1CC1/FIP200: RB1 inducible coiled-coil protein 1; RBP: RAB-binding protein; SD: standard deviation; SDS: sodium dodecyl sulfate; SQSTM1/p62: sequestosome 1; TBS-T: tris-buffered saline-tween 20; WD (repeat): tryptophan-aspartic acid (repeat); WIPI2B: WD repeat domain phosphoinositide interacting 2B; WT: wild type.
Assuntos
Autofagossomos , Proteínas Relacionadas à Autofagia , Proteínas de Transporte , Proteínas rab de Ligação ao GTP , Animais , Autofagossomos/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Transporte/metabolismo , Fibroblastos/metabolismo , Humanos , Camundongos , Ligação Proteica , Proteínas rab de Ligação ao GTP/metabolismoRESUMO
Autophagy is a conserved catabolic process involved in the elimination of proteins, organelles and pathogens in eukaryotic cells. Lipidated LC3 proteins that are conjugated to phosphatidylethanolamine (PE) play a key role in autophagosome biogenesis. Endogenous ATG4-mediated deconjugation of LC3-PE is required for LC3 recycling. However, the Legionella effector RavZ irreversibly deconjugates LC3-PE to inhibit autophagy. It is not clear how ATG4 and RavZ process LC3-PE with distinct modes. Herein, a series of semisynthetic LC3-PE proteins containing C-terminal mutations or insertions were used to investigate the relationship of the C-terminal structure of LC3-PE with ATG4/RavZ-mediated deconjugation. Using a combination of molecular docking and biochemical assays, we found that Gln116, Phe119 and Gly120 of LC3-PE are required for cleavage by both RavZ and ATG4B, whereas Glu117(LC3) is specific to cleavage by RavZ. The molecular ruler mechanism exists in the active site of ATG4B, but not in RavZ. Met63 and Gln64 at the active site of RavZ are involved in accommodating LC3 C-terminal motif. Our findings show that the distinct binding modes of the LC3 C-terminal motif (116-120) with ATG4 and RavZ might determine the specificity of cleavage site.
Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfatidiletanolaminas/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cisteína Endopeptidases/química , Humanos , Legionella pneumophila/química , Legionella pneumophila/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Simulação de Acoplamento Molecular , Fosfatidiletanolaminas/químicaRESUMO
Fabry disease is one of the most common lysosomal storage disorders caused by mutations in the gene encoding lysosomal α-galactosidase A (α-Gal A) and resultant accumulation of glycosphingolipids. The sugar mimetic 1-deoxygalactonojirimycin (DGJ), an orally available pharmacological chaperone, was clinically approved as an alternative to intravenous enzyme replacement therapy. The decision as to whether a patient should be treated with DGJ depends on the genetic variant within the α-galactosidase A encoding gene (GLA). A good laboratory practice (GLP)-validated cell culture-based assay to investigate the biochemical responsiveness of the variants is currently the only source available to obtain pivotal information about susceptibility to treatment. Herein, variants were defined amenable when an absolute increase in enzyme activity of ≥3% of wild type enzyme activity and a relative increase in enzyme activity of ≥1.2-fold was achieved following DGJ treatment. Efficacy testing was carried out for over 1000 identified GLA variants in cell culture. Recent data suggest that about one-third of the variants comply with the amenability criteria. A recent study highlighted the impact of inter-assay variability on DGJ amenability, thereby reducing the power of the assay to predict eligible patients. This prompted us to compare our own α-galactosidase A enzyme activity data in a very similar in-house developed assay with those from the GLP assay. In an essentially retrospective approach, we reviewed 148 GLA gene variants from our former studies for which enzyme data from the GLP study were available and added novel data for 30 variants. We also present data for 18 GLA gene variants for which no data from the GLP assay are currently available. We found that both differences in experimental biochemical data and the criteria for the classification of amenability cause inter-assay discrepancy. We conclude that low baseline activity, borderline biochemical responsiveness, and inter-assay discrepancy are alarm signals for misclassifying a variant that must not be ignored. Furthermore, there is no solid basis for setting a minimum response threshold on which a clinical indication with DGJ can be justified.
Assuntos
Substituição de Aminoácidos , Doença de Fabry/genética , alfa-Galactosidase/metabolismo , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/uso terapêutico , Bioensaio , Doença de Fabry/tratamento farmacológico , Doença de Fabry/metabolismo , Células HEK293 , Humanos , Medicina de Precisão , Reprodutibilidade dos Testes , Estudos Retrospectivos , alfa-Galactosidase/genéticaRESUMO
Niemann-Pick Type C (NP-C) is a rare disorder of lipid metabolism caused by mutations within the NPC1 and NPC2 genes. NP-C is a neurovisceral disease leading to a heterogeneous, multisystemic spectrum of symptoms in those affected. Until now, there is no investigative tool to demonstrate the significance of single variants within the NPC genes. Hence, the aim of the study was to establish a test that allows for an objective assessment of the pathological potential of NPC1 gene variants. Chinese hamster ovary cells defective in the NPC1 gene accumulate cholesterol in lysosomal storage organelles. The cells were transfected with NPC1-GFP plasmid vectors carrying distinct sequence variants. Filipin staining was used to test for complementation of the phenotype. The known variant p.Ile1061Thr showed a significantly impaired cholesterol clearance after 12 and 24 h compared to the wild type. Among the investigated variants, p.Ser954Leu and p.Glu1273Lys showed decelerated cholesterol clearance as well. The remaining variants p.Gln60His, p.Val494Met, and p.Ile787Val showed a cholesterol clearance indistinguishable from wild type. Further, p.Ile1061Thr acquired an enhanced clearance ability upon 25-hydroxycholesterol treatment. We conclude that the variants that caused an abnormal clearance phenotype are highly likely to be of clinical relevance. Moreover, we present a system that can be utilized to screen for new drugs.
Assuntos
Teste de Complementação Genética , Variação Genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Alelos , Sequência de Aminoácidos , Animais , Células CHO , Células Cultivadas , Colesterol/metabolismo , Mapeamento Cromossômico , Cricetulus , Frequência do Gene , Estudos de Associação Genética , Genótipo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Moleculares , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/diagnóstico , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Fenótipo , Conformação Proteica , Relação Estrutura-AtividadeRESUMO
The endoplasmic reticulum (ER) is the site of synthesis and folding of membrane and secretory proteins. The fraction of protein passing through the ER represents a large proportion of the total protein in the cell. Protein folding, glycosylation, sorting and transport are essential tasks of the ER and a compromised ER folding network has been recognized to be a key component in the disease pathogenicity of common neurodegenerative, metabolic and malignant diseases. On the other hand, the ER protein folding machinery also holds significant potential for therapeutic interventions. Many causes can lead to ER stress. A disturbed calcium homeostasis, the generation of reactive oxygen species (ROS) and a persistent overload of misfolded proteins within the ER can drive the course of adisease. In this review the role of ER-stress in diseases of the liver and pancreas will be examined using pancreatitis and Wilson´s disease as examples. Potential therapeutic targets in ER-stress pathways will also be discussed.
Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Fígado/metabolismo , Pâncreas/metabolismo , Animais , Humanos , Dobramento de Proteína , Resposta a Proteínas não Dobradas/fisiologiaRESUMO
RavZ, an effector protein of pathogenic Legionella pneumophila, inhibits host macroautophagy/autophagy by deconjugation of lipidated LC3 proteins from phosphatidylethanolamine (PE) on the autophagosome membrane. The mechanism for how RavZ specifically recognizes and deconjugates the lipidated LC3s is not clear. To understand the structure-function relationship of LC3-deconjugation by RavZ, we prepared semisynthetic LC3 proteins modified with different fragments of PE or 1-hexadecanol (C16). We find that RavZ activity is strictly dependent on the conjugated PE structure and RavZ extracts LC3-PE from the membrane before deconjugation. Structural and biophysical analysis of RavZ-LC3 interactions suggest that RavZ initially recognizes LC3-PE on the membrane via its N-terminal LC3-interacting region (LIR) motif. RavZ specifically targets to autophagosome membranes by interaction with phosphatidylinositol 3-phosphate (PtdIns3P) via its C-terminal domain and association with membranes via the hydrophobic α3 helix. The α3 helix is involved in extraction of the PE moiety and docking of the fatty acid chains into the lipid-binding site of RavZ, which is related in structure to that of the phospholipid transfer protein Sec14. The LIR interaction and lipid binding facilitate subsequent proteolytic cleavage of LC3-PE. The findings reveal a novel mode of host-pathogen interaction.
Assuntos
Autofagia , Legionella pneumophila/citologia , Autofagossomos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Legionella pneumophila/metabolismo , Modelos BiológicosRESUMO
Autophagy is a conserved cellular process involved in the elimination of proteins and organelles. It is also used to combat infection with pathogenic microbes. The intracellular pathogen Legionella pneumophila manipulates autophagy by delivering the effector protein RavZ to deconjugate Atg8/LC3 proteins coupled to phosphatidylethanolamine (PE) on autophagosomal membranes. To understand how RavZ recognizes and deconjugates LC3-PE, we prepared semisynthetic LC3 proteins and elucidated the structures of the RavZ:LC3 interaction. Semisynthetic LC3 proteins allowed the analysis of structure-function relationships. RavZ extracts LC3-PE from the membrane before deconjugation. RavZ initially recognizes the LC3 molecule on membranes via its N-terminal LC3-interacting region (LIR) motif. The RavZ α3 helix is involved in extraction of the PE moiety and docking of the acyl chains into the lipid-binding site of RavZ that is related in structure to that of the phospholipid transfer protein Sec14. Thus, Legionella has evolved a novel mechanism to specifically evade host autophagy.
Assuntos
Família da Proteína 8 Relacionada à Autofagia/antagonistas & inibidores , Autofagia , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Legionella pneumophila/fisiologia , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Fosfatidiletanolaminas/metabolismo , Família da Proteína 8 Relacionada à Autofagia/química , Proteínas de Bactérias/química , Linhagem Celular , Cristalografia por Raios X , Humanos , Proteínas Associadas aos Microtúbulos/química , Modelos Moleculares , Conformação ProteicaRESUMO
All together: Lipidated LC3 has been synthesized by expressed protein ligation. A TEV-cleavable MBP tag was employed to facilitate ligation under folding conditions and to solubilize the lipidated protein. The synthetic LC3-phosphatidylethanolamine (PE) mediates membrane tethering and fusion at the physiological concentration of PE, and could be a useful tool for autophagy studies.
Assuntos
Lipossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfatidiletanolaminas/química , Cisteína Endopeptidases/metabolismo , Endopeptidases/metabolismo , Humanos , Luz , Proteínas Ligantes de Maltose/química , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Espalhamento de RadiaçãoRESUMO
Six novel inhibitors of Vibrio harveyi chitinase A (VhChiA), a family-18 chitinase homolog, were identified by in vitro screening of a library of pharmacologically active compounds. Unlike the previously identified inhibitors that mimicked the reaction intermediates, crystallographic evidence from 14 VhChiA-inhibitor complexes showed that all of the inhibitor molecules occupied the outer part of the substrate-binding cleft at two hydrophobic areas. The interactions at the aglycone location are well defined and tightly associated with Trp-397 and Trp-275, whereas the interactions at the glycone location are patchy, indicating lower affinity and a loose interaction with two consensus residues, Trp-168 and Val-205. When Trp-275 was substituted with glycine (W275G), the binding affinity toward all of the inhibitors dramatically decreased, and in most structures two inhibitor molecules were found to stack against Trp-397 at the aglycone site. Such results indicate that hydrophobic interactions are important for binding of the newly identified inhibitors by the chitinase. X-ray data and isothermal microcalorimetry showed that the inhibitors occupied the active site of VhChiA in three different binding modes, including single-site binding, independent two-site binding, and sequential two-site binding. The inhibitory effect of dequalinium in the low nanomolar range makes this compound an extremely attractive lead compound for plausible development of therapeutics against human diseases involving chitinase-mediated pathologies.
Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Quitinases/antagonistas & inibidores , Quitinases/química , Inibidores Enzimáticos/química , Modelos Moleculares , Vibrio/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Ligação ProteicaRESUMO
High-performance liquid chromatography mass spectrometry (HPLC MS) was employed to assess the binding behaviors of various substrates to Vibrio harveyi chitinase A. Quantitative analysis revealed that hexaNAG preferred subsites -2 to +2 over subsites -3 to +2 and pentaNAG only required subsites -2 to +2, while subsites -4 to +2 were not used at all by both substrates. The results suggested that binding of the chitooligosaccharides to the enzyme essentially occurred in compulsory fashion. The symmetrical binding mode (-2 to +2) was favored presumably to allow the natural form of sugars to be utilized effectively. Crystalline alpha chitin was initially hydrolyzed into a diverse ensemble of chitin oligomers, providing a clear sign of random attacks that took place within chitin chains. However, the progressive degradation was shown to occur in greater extent at later time to complete hydrolysis. The effect of the reducing-end residues were also investigated by means of HPLC MS. Substitutions of Trp275 to Gly and Trp397 to Phe significantly shifted the anomer selectivity of the enzyme toward beta substrates. The Trp275 mutation modulated the kinetic property of the enzyme by decreasing the catalytic constant (k (cat)) and the substrate specificity (k (cat)/K (m)) toward all substrates by five- to tenfold. In contrast, the Trp397 mutation weakened the binding strength at subsite (+2), thereby speeding up the rate of the enzymatic cleavage toward soluble substrates but slowing down the rate of the progressive degradation toward insoluble chitin.
RESUMO
This research describes four X-ray structures of Vibrio harveyi chitinase A and its catalytically inactive mutant (E315M) in the presence and absence of substrates. The overall structure of chitinase A is that of a typical family-18 glycosyl hydrolase comprising three distinct domains: (i) the amino-terminal chitin-binding domain; (ii) the main catalytic (alpha/beta)(8) TIM-barrel domain; and (iii) the small (alpha+beta) insertion domain. The catalytic cleft of chitinase A has a long, deep groove, which contains six chitooligosaccharide ring-binding subsites (-4)(-3)(-2)(-1)(+1)(+2). The binding cleft of the ligand-free E315M is partially blocked by the C-terminal (His)(6)-tag. Structures of E315M-chitooligosaccharide complexes display a linear conformation of pentaNAG, but a bent conformation of hexaNAG. Analysis of the final 2F(o)-F(c) omit map of E315M-NAG6 reveals the existence of the linear conformation of the hexaNAG at a lower occupancy with respect to the bent conformation. These crystallographic data provide evidence that the interacting sugars undergo conformational changes prior to hydrolysis by the wild-type enzyme.
Assuntos
Quitinases/química , Oligossacarídeos/química , Sítios de Ligação , Catálise , Domínio Catalítico , Quitina/química , Clonagem Molecular , Cristalografia por Raios X/métodos , Hidrólise , Conformação Molecular , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Vibrio/enzimologiaRESUMO
BACKGROUND: Vibrio carchariae chitinase A (EC3.2.1.14) is a family-18 glycosyl hydrolase and comprises three distinct structural domains: i) the amino terminal chitin binding domain (ChBD); ii) the (alpha/beta)8 TIM barrel catalytic domain (CatD); and iii) the alpha + beta insertion domain. The predicted tertiary structure of V. carchariae chitinase A has located the residues Ser33 & Trp70 at the end of ChBD and Trp231 & Tyr245 at the exterior of the catalytic cleft. These residues are surface-exposed and presumably play an important role in chitin hydrolysis. RESULTS: Point mutations of the target residues of V. carchariae chitinase A were generated by site-directed mutagenesis. With respect to their binding activity towards crystalline alpha-chitin and colloidal chitin, chitin binding assays demonstrated a considerable decrease for mutants W70A and Y245W, and a notable increase for S33W and W231A. When the specific hydrolyzing activity was determined, mutant W231A displayed reduced hydrolytic activity, whilst Y245W showed enhanced activity. This suggested that an alteration in the hydrolytic activity was not correlated with a change in the ability of the enzyme to bind to chitin polymer. A mutation of Trp70 to Ala caused the most severe loss in both the binding and hydrolytic activities, which suggested that it is essential for crystalline chitin binding and hydrolysis. Mutations varied neither the specific hydrolyzing activity against pNP-[GlcNAc]2, nor the catalytic efficiency against chitohexaose, implying that the mutated residues are not important in oligosaccharide hydrolysis. CONCLUSION: Our data provide direct evidence that the binding as well as hydrolytic activities of V. carchariae chitinase A to insoluble chitin are greatly influenced by Trp70 and less influenced by Ser33. Though Trp231 and Tyr245 are involved in chitin hydrolysis, they do not play a major role in the binding process of crystalline chitin and the guidance of the chitin chain into the substrate binding cleft of the enzyme.