Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain Res Bull ; 187: 85-97, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35781029

RESUMO

Beneficial effects of estrogens have been reported in Parkinson's disease (PD) for many years. We previously reported their neuroprotective and anti-inflammatory potentials in the enteric nervous system of the intestine, a region possibly affected during the early stages of the disease according to Braak's hypothesis. Three different estrogen receptors have been characterized to date: the estrogen receptor alpha (ERα), the estrogen receptor beta (ERß) and the G protein coupled estrogen receptor 1 (GPER1). The aim of the present study was to decipher the individual contribution of each estrogen receptor to the therapeutic properties of 17ß-estradiol (E2) in the myenteric plexus of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Different agonists, 4,4',4''-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT; ERα), 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN; ERß), G1 (GPER1), and antagonists, ICI 182,780 (ERα and ERß), G15 (GPER1), were used to analyze the involvement of each receptor. We confirmed that G1 protects dopamine (DA) neurons to a similar extent as E2. An anti-inflammatory effect on proinflammatory macrophages and cultured human monocytes was also demonstrated with E2 and G1. The effects of PPT and DPN were less potent than G1 with only a partial neuroprotection of DA neurons by PPT and a partial reduction of interleukin (IL)- 1ß production in monocytes by PPT and DPN. Overall, the present results indicate that the positive outcomes of estrogens are mainly through activation of GPER1. Therefore, this suggests that targeting GPER1 could be a promising approach for future estrogen-based hormone therapies during early PD.


Assuntos
Doença de Parkinson , Receptores de Estrogênio , Animais , Humanos , Camundongos , Anti-Inflamatórios , Modelos Animais de Doenças , Estradiol/farmacologia , Estradiol/uso terapêutico , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/agonistas , Estrogênios/farmacologia , Intestinos , Doença de Parkinson/tratamento farmacológico , Receptores de Estrogênio/metabolismo
2.
Front Cell Neurosci ; 12: 282, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30214398

RESUMO

Microglia, often described as the brain-resident macrophages, play crucial roles in central nervous system development, maintenance, plasticity, and adaptation to the environment. Both aging and chronic stress promote microglial morphological and functional changes, which can lead to the development of brain pathologies including Parkinson's disease (PD). Indeed, aging, and chronic stress represent main environmental risk factors for PD. In these conditions, microglia are known to undergo different morphological and functional changes. Inflammation is an important component of PD and disequilibrium between pro- and anti-inflammatory microglial functions might constitute a crucial component of PD onset and progression. Cumulated data also suggest that, during PD, microglia might lose beneficial functions and gain detrimental ones, in addition to mediating inflammation. In this mini-review, we aim to summarize the literature discussing the functional and morphological changes that microglia undergo in PD pathophysiology and upon exposure to its two main environmental risk factors, aging, and chronic stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA