Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(18)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39338885

RESUMO

In this paper, we present the implementation of an artificial intelligence health assistant designed to complement a previously built eHealth data acquisition system for helping both patients and medical staff. The assistant allows users to query medical information in a smarter, more natural way, respecting patient privacy and using secure communications through a chat style interface based on the Matrix decentralized open protocol. Assistant responses are constructed locally by an interchangeable large language model (LLM) that can form rich and complete answers like most human medical staff would. Restricted access to patient information and other related resources is provided to the LLM through various methods for it to be able to respond correctly based on specific patient data. The Matrix protocol allows deployments to be run in an open federation; hence, the system can be easily scaled.


Assuntos
Inteligência Artificial , Telemedicina , Humanos , Segurança Computacional , Comunicação , Idioma
2.
Artigo em Inglês | MEDLINE | ID: mdl-36141685

RESUMO

Over the last couple of years, in the context of the COVID-19 pandemic, many healthcare issues have been exacerbated, highlighting the paramount need to provide both reliable and affordable health services to remote locations by using the latest technologies such as video conferencing, data management, the secure transfer of patient information, and efficient data analysis tools such as machine learning algorithms. In the constant struggle to offer healthcare to everyone, many modern technologies find applicability in eHealth, mHealth, telehealth or telemedicine. Through this paper, we attempt to render an overview of what different technologies are used in certain healthcare applications, ranging from remote patient monitoring in the field of cardio-oncology to analyzing EEG signals through machine learning for the prediction of seizures, focusing on the role of artificial intelligence in eHealth.


Assuntos
COVID-19 , Telemedicina , Inteligência Artificial , COVID-19/epidemiologia , Atenção à Saúde , Humanos , Pandemias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA